Create minimax_to_bf16.py
Browse files- minimax_to_bf16.py +142 -0
minimax_to_bf16.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from argparse import ArgumentParser
|
| 5 |
+
from glob import glob
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from safetensors.torch import load_file, save_file
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def weight_dequant_fp8(weight_fp8, scale_inv):
|
| 13 |
+
"""
|
| 14 |
+
Dequantize FP8 weights to BF16 using scale_inv.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
weight_fp8: FP8 tensor
|
| 18 |
+
scale_inv: Inverse scale tensor (F32)
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
BF16 tensor
|
| 22 |
+
"""
|
| 23 |
+
# Convert FP8 to float32 first
|
| 24 |
+
weight_f32 = weight_fp8.to(torch.float32)
|
| 25 |
+
|
| 26 |
+
# Apply inverse scaling
|
| 27 |
+
# scale_inv shape is typically [out_features_blocks, in_features_blocks]
|
| 28 |
+
# We need to broadcast it properly to match weight dimensions
|
| 29 |
+
if scale_inv.dim() == 2:
|
| 30 |
+
# Expand scale_inv to match weight dimensions
|
| 31 |
+
out_blocks, in_blocks = scale_inv.shape
|
| 32 |
+
weight_blocks_out = weight_fp8.shape[0] // out_blocks
|
| 33 |
+
weight_blocks_in = weight_fp8.shape[1] // in_blocks
|
| 34 |
+
|
| 35 |
+
# Repeat scale_inv to match weight shape
|
| 36 |
+
scale_inv_expanded = scale_inv.repeat_interleave(weight_blocks_out, dim=0)
|
| 37 |
+
scale_inv_expanded = scale_inv_expanded.repeat_interleave(weight_blocks_in, dim=1)
|
| 38 |
+
|
| 39 |
+
weight_f32 = weight_f32 * scale_inv_expanded
|
| 40 |
+
else:
|
| 41 |
+
weight_f32 = weight_f32 * scale_inv
|
| 42 |
+
|
| 43 |
+
# Convert to BF16
|
| 44 |
+
return weight_f32.to(torch.bfloat16)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def main(fp8_path, bf16_path):
|
| 48 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 49 |
+
os.makedirs(bf16_path, exist_ok=True)
|
| 50 |
+
|
| 51 |
+
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
|
| 52 |
+
with open(model_index_file, "r") as f:
|
| 53 |
+
model_index = json.load(f)
|
| 54 |
+
|
| 55 |
+
weight_map = model_index["weight_map"]
|
| 56 |
+
|
| 57 |
+
# Cache for loaded safetensor files
|
| 58 |
+
loaded_files = {}
|
| 59 |
+
fp8_weight_names = []
|
| 60 |
+
|
| 61 |
+
# Helper function to get tensor from the correct file
|
| 62 |
+
def get_tensor(tensor_name):
|
| 63 |
+
if tensor_name not in weight_map:
|
| 64 |
+
return None
|
| 65 |
+
file_name = weight_map[tensor_name]
|
| 66 |
+
if file_name not in loaded_files:
|
| 67 |
+
file_path = os.path.join(fp8_path, file_name)
|
| 68 |
+
loaded_files[file_name] = load_file(file_path, device="cuda")
|
| 69 |
+
return loaded_files[file_name][tensor_name]
|
| 70 |
+
|
| 71 |
+
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
|
| 72 |
+
safetensor_files = [f for f in safetensor_files if not f.endswith(".index.json")]
|
| 73 |
+
safetensor_files.sort()
|
| 74 |
+
|
| 75 |
+
print(f"Found {len(safetensor_files)} safetensor files to convert")
|
| 76 |
+
|
| 77 |
+
for safetensor_file in tqdm(safetensor_files, desc="Converting files"):
|
| 78 |
+
file_name = os.path.basename(safetensor_file)
|
| 79 |
+
current_state_dict = load_file(safetensor_file, device="cuda")
|
| 80 |
+
loaded_files[file_name] = current_state_dict
|
| 81 |
+
|
| 82 |
+
new_state_dict = {}
|
| 83 |
+
|
| 84 |
+
for weight_name, weight in current_state_dict.items():
|
| 85 |
+
# Skip scale_inv tensors
|
| 86 |
+
if weight_name.endswith("_scale_inv"):
|
| 87 |
+
continue
|
| 88 |
+
|
| 89 |
+
# Check if this is an FP8 weight (F8_E4M3 has element_size of 1)
|
| 90 |
+
if weight.dtype == torch.float8_e4m3fn or weight.element_size() == 1:
|
| 91 |
+
scale_inv_name = f"{weight_name}_scale_inv"
|
| 92 |
+
scale_inv = get_tensor(scale_inv_name)
|
| 93 |
+
|
| 94 |
+
if scale_inv is not None:
|
| 95 |
+
fp8_weight_names.append(weight_name)
|
| 96 |
+
new_state_dict[weight_name] = weight_dequant_fp8(weight, scale_inv)
|
| 97 |
+
else:
|
| 98 |
+
print(f"Warning: Missing scale_inv tensor for {weight_name}, keeping as-is")
|
| 99 |
+
new_state_dict[weight_name] = weight
|
| 100 |
+
else:
|
| 101 |
+
# Already BF16 or F32, keep as-is
|
| 102 |
+
new_state_dict[weight_name] = weight
|
| 103 |
+
|
| 104 |
+
# Save converted weights
|
| 105 |
+
new_safetensor_file = os.path.join(bf16_path, file_name)
|
| 106 |
+
save_file(new_state_dict, new_safetensor_file)
|
| 107 |
+
|
| 108 |
+
# Memory management: keep only the 2 most recently used files
|
| 109 |
+
if len(loaded_files) > 2:
|
| 110 |
+
oldest_file = next(iter(loaded_files))
|
| 111 |
+
del loaded_files[oldest_file]
|
| 112 |
+
torch.cuda.empty_cache()
|
| 113 |
+
|
| 114 |
+
# Update model index - remove all _scale_inv entries
|
| 115 |
+
print("Updating model index...")
|
| 116 |
+
new_weight_map = {}
|
| 117 |
+
for weight_name, file_name in weight_map.items():
|
| 118 |
+
if not weight_name.endswith("_scale_inv"):
|
| 119 |
+
new_weight_map[weight_name] = file_name
|
| 120 |
+
|
| 121 |
+
new_model_index = {
|
| 122 |
+
"metadata": model_index.get("metadata", {}),
|
| 123 |
+
"weight_map": new_weight_map
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
|
| 127 |
+
with open(new_model_index_file, "w") as f:
|
| 128 |
+
json.dump(new_model_index, f, indent=2)
|
| 129 |
+
|
| 130 |
+
print(f"Conversion complete! Converted {len(fp8_weight_names)} FP8 weights to BF16")
|
| 131 |
+
print(f"Output saved to: {bf16_path}")
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
parser = ArgumentParser(description="Convert MiniMax-M2 from FP8 to BF16")
|
| 136 |
+
parser.add_argument("--input-fp8-hf-path", type=str, required=True,
|
| 137 |
+
help="Path to the FP8 model directory")
|
| 138 |
+
parser.add_argument("--output-bf16-hf-path", type=str, required=True,
|
| 139 |
+
help="Path to save the BF16 model")
|
| 140 |
+
args = parser.parse_args()
|
| 141 |
+
|
| 142 |
+
main(args.input_fp8_hf_path, args.output_bf16_hf_path)
|