import torch import os import tqdm import glob import multiprocessing from functools import partial from time_r1.utils.clip_service import SiglipClient from time_r1.utils.qwen_vl_utils import fetch_video from time_r1.utils.io import load_jsonl import os SIGLIP_URL = os.environ.get("SIGLIP_URL", "grpc://127.0.0.1:51000") clip_model = SiglipClient(base_url=SIGLIP_URL) def process_single_video(video_path): # ele = { # "video": video_path, # "fps": fps, # "max_frames": max_frames, # "total_pixels": max_frames * 1024 * 28 * 28, # } # video, sample_fps = fetch_video(ele, return_video_sample_fps=True) # print(video_path) try: video = torch.load(video_path + ".frame_cache")["frame_tensor"] features = clip_model.encode_images(video) print(features.shape, video.shape) # save features torch.save(features, video_path + ".feature_cache") except Exception as e: print(f'{e}, {video_path}') def prepare_feature_cache(video_root, dataset_path=None, num_workers=8, overwrite=False): if dataset_path is not None: # 修改这里:直接使用json.load而不是load_jsonl import json with open(dataset_path, 'r', encoding='utf-8') as f: video_data = json.load(f) # 这是JSON数组 # 提取video_path字段,并去重(同一个视频可能有多条记录) video_paths = set() # 使用set去重 for v in video_data: if "video_path" in v: video_paths.add(v["video_path"]) elif "video" in v: # 如果有video字段,可能需要拼接路径 video_path = os.path.join(video_root, v["video"]) video_paths.add(video_path) video_list = list(video_paths) if not video_list: print(f"No MP4 videos found in {video_root}") return if not overwrite: print("skipping videos that already have feature cache") num_total = len(video_list) video_list = [v for v in video_list if not os.path.exists(v + ".feature_cache")] num_skipped = num_total - len(video_list) print(f"skipped {num_skipped} videos") if num_workers is None: num_workers = multiprocessing.cpu_count() # Default to using all available CPU cores print(f"Found {len(video_list)} videos. Starting processing with {num_workers} workers...") # Use a multiprocessing Pool to process videos in parallel with multiprocessing.Pool(processes=num_workers) as pool: # Using tqdm with pool.imap_unordered for progress bar and efficient iteration # We wrap process_single_video if it needs more arguments or if we want to handle results # For this case, process_single_video only takes video_path list(tqdm.tqdm(pool.imap_unordered(process_single_video, video_list), total=len(video_list))) print("All videos processed.") if __name__ == "__main__": import fire fire.Fire(prepare_feature_cache)