from time_r1.utils.qwen_vl_utils_prepare import floor_by_factor, FRAME_FACTOR, smart_resize, ceil_by_factor import decord import torch import os import tqdm import glob import multiprocessing from torchvision import io, transforms from torchvision.transforms import InterpolationMode from functools import partial from time_r1.utils.io import load_jsonl import debugpy # try: # # 5678 is the default attach port in the VS Code debug configurations. Unless a host and port are specified, host defaults to 127.0.0.1 # debugpy.listen(("localhost", 9511)) # print("Waiting for debugger attach") # debugpy.wait_for_client() # except Exception as e: # pass FPS_MIN_FRAMES = 4 FPS_MAX_FRAMES = 120 # 建议根据你的显存情况调整,60-80 是常用范围 FRAME_FACTOR = 2 def get_video_tensor(video_path, target_fps=2, image_factor = 28, min_pixels = 28 * 28 * 4, max_pixels = 28 * 28 * 128): """ 将视频以固定帧率提前抽帧、解码保存为tensor,用于后续训练 """ vr = decord.VideoReader(video_path) total_frames, video_fps = len(vr), vr.get_avg_fps() min_nframes = ceil_by_factor(FPS_MIN_FRAMES, FRAME_FACTOR) # :ceil_by_factor 是为了保证帧数是 FRAME_FACTOR 的倍数 max_frames = floor_by_factor(min(FPS_MAX_FRAMES, total_frames), FRAME_FACTOR) nframes = total_frames / video_fps * target_fps # 理论帧数 if nframes > total_frames: print(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]") nframes = min(min(max(nframes, min_nframes), max_frames), total_frames) nframes = floor_by_factor(nframes, FRAME_FACTOR) frame_idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist() # 均匀采样 frame_tensor = vr.get_batch(frame_idx).asnumpy() frame_tensor = torch.tensor(frame_tensor).permute(0, 3, 1, 2) # Convert to TCHW format sample_fps = nframes / max(total_frames, 1e-6) * video_fps height, width = frame_tensor.shape[2], frame_tensor.shape[3] resized_height, resized_width = smart_resize( height, width, factor=image_factor, min_pixels=min_pixels, max_pixels=max_pixels, ) frame_tensor = transforms.functional.resize( frame_tensor, [resized_height, resized_width], interpolation=InterpolationMode.BICUBIC, antialias=True, ) frame_cache = { "frame_tensor": frame_tensor, "fps": sample_fps, } return frame_cache def process_single_video(video_path, target_fps=1, image_factor = 28, min_pixels = 28 * 28 * 128, max_pixels = 28 * 28 * 256): save_dir = '/data/shuimu.chen/LongVideoBench/video_cache_300p_120' os.makedirs(save_dir, exist_ok=True) video_filename = os.path.basename(video_path) save_path = os.path.join(save_dir, video_filename + '.frame_cache') """Helper function to process and save frame cache for a single video.""" print(f"Processing {video_path}...") try: frame_cache = get_video_tensor(video_path, target_fps, image_factor, min_pixels, max_pixels) torch.save(frame_cache, save_path) print(f"Successfully saved frame cache for {video_path}") except Exception as e: print(f"Error processing {video_path}: {e}") # def process_single_video(video_path, target_fps=1, image_factor = 28, min_pixels = 28 * 28 * 128, max_pixels = 28 * 28 * 256): # save_path = '/data/shuimu.chen/LongVideoBench/video_cache_3p_60' # """Helper function to process and save frame cache for a single video.""" # print(f"Processing {video_path}...") # try: # frame_cache = get_video_tensor(video_path, target_fps, image_factor, min_pixels, max_pixels) # torch.save(frame_cache, video_path + ".frame_cache") # print(f"Successfully saved frame cache for {video_path}") # except Exception as e: # print(f"Error processing {video_path}: {e}") def prepare_frame_cache(video_root, dataset_path=None, num_workers=8, target_fps=1, overwrite=False, image_factor = 28, min_pixels = 28 * 28 * 128, max_pixels = 28 * 28 * 256): if dataset_path is not None: # 修改这里:直接使用json.load而不是load_jsonl import json with open(dataset_path, 'r', encoding='utf-8') as f: video_data = json.load(f) # 这是JSON数组 # 提取video_path字段,并去重(同一个视频可能有多条记录) video_paths = set() # 使用set去重 for v in video_data: if "video_path" in v: video_paths.add(v["video_path"]) elif "video" in v: # 如果有video字段,可能需要拼接路径 video_path = os.path.join(video_root, v["video"]) video_paths.add(video_path) video_list = list(video_paths) else: video_list = glob.glob(os.path.join(video_root, "*.mp4")) if not video_list: print(f"No MP4 videos found in {video_root}") return # remove videos that already have frame cache if not overwrite: print("skipping videos that already have frame cache") num_total = len(video_list) video_list = [v for v in video_list if not os.path.exists(v + ".frame_cache")] num_skipped = num_total - len(video_list) print(f"skipped {num_skipped} videos") if num_workers is None: num_workers = multiprocessing.cpu_count() # Default to using all available CPU cores print(f"Found {len(video_list)} videos. Starting processing with {num_workers} workers...") # Use a multiprocessing Pool to process videos in parallel with multiprocessing.Pool(processes=num_workers) as pool: # Using tqdm with pool.imap_unordered for progress bar and efficient iteration # We wrap process_single_video if it needs more arguments or if we want to handle results # For this case, process_single_video only takes video_path func = partial(process_single_video, target_fps=target_fps, image_factor = image_factor, min_pixels = min_pixels, max_pixels = max_pixels) list(tqdm.tqdm(pool.imap_unordered(func, video_list), total=len(video_list))) print("All videos processed.") if __name__ == "__main__": import fire fire.Fire(prepare_frame_cache)