File size: 4,976 Bytes
484b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from warnings import warn

import numpy as np

warn(
    "DEPRECATED: The file pdeinvbench/losses/fluids_numpy.py is being imported. This is most certainly a bug!"
)


def _maybe_unsqueeze_3d(
    u,
):
    """
    Given a tensor, makes sure that the last dimension is 1 (channel dim).
    Helps to ensure number of channels consistency.
    NOTE: This should only be used within this file. Assumes that u is an unbatched fluid field.
    Also always assumes well-formed input.
    """
    return u


def _maybe_unsqueeze_2d(u):
    """
    Same as 3d version but assumes a tensor of shape (nx, ny, 1)
    """
    return u


def _compute_stream_function(vorticity, x, y, fourier=False):
    """
    from the vorticity, compute the stream function and returns in physical space
    vorticity shape: (nt, nx, ny, 1) Channels is squeezed off
    """
    w = vorticity
    w = np.squeeze(w)
    what = np.fft.fft2(w)
    nx, ny = w.shape[-2], w.shape[-1]
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
    ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
    kx, ky = np.meshgrid(kx, ky)
    wavenumbers_squared = kx**2 + ky**2
    # stream function = psi
    psi_hat = np.zeros_like(what, dtype=np.complex128)
    psi_hat[wavenumbers_squared > 0] = what[wavenumbers_squared > 0] / (
        -wavenumbers_squared[wavenumbers_squared > 0]
    )

    if fourier:
        return _maybe_unsqueeze_2d(psi_hat)
    else:
        return np.fft.ifft2(psi_hat).real


def compute_stream_function(vorticity, x, y, fourier=False):
    nt = vorticity.shape[0]
    out = []
    for i in range(nt):
        out.append(_compute_stream_function(vorticity[i], x, y, fourier=fourier))
    return np.asarray(out)


def _compute_stream_function_jaxcfd(vorticity, x, y, fourier=False):
    w = vorticity
    w = np.squeeze(w)
    what = np.fft.fft2(w)
    nx, ny = w.shape[-2], w.shape[-1]
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
    ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
    kx, ky = np.meshgrid(kx, ky)
    wavenumbers_squared = kx**2 + ky**2

    # Compute psi
    lap = wavenumbers_squared
    lap[0, 0] = 1
    psi_hat = -1 / lap * what
    if fourier:
        return psi_hat
    return np.fft.ifft2(psi_hat).real


def compute_stream_function_jaxcfd(vorticity, x, y, fourier=False):
    nt = vorticity.shape[0]
    out = []
    for i in range(nt):
        out.append(_compute_stream_function_jaxcfd(vorticity[i], x, y, fourier=fourier))
    return np.asarray(out)


def advection(vorticity, x, y, stream_func):
    psi_hat = stream_func(vorticity, x, y, fourier=True)
    w = vorticity
    w = np.squeeze(w)
    # Compute u, v
    nx, ny = w.shape[-2], w.shape[-1]
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    kx = np.fft.fftfreq(nx, d=dx) * 2 * np.pi
    ky = np.fft.fftfreq(ny, d=dy) * 2 * np.pi
    kx, ky = np.meshgrid(kx, ky)
    vx_hat = 1j * ky * psi_hat
    vy_hat = -1j * kx * psi_hat
    vx = np.fft.ifft2(vx_hat).real
    vy = np.fft.ifft2(vy_hat).real
    w_dx = np.gradient(w, dx, axis=1)
    w_dy = np.gradient(w, dy, axis=2)

    adv = vx * w_dx + vy * w_dy
    return _maybe_unsqueeze_3d(adv), _maybe_unsqueeze_3d(vx), _maybe_unsqueeze_3d(vy)


def second_order_gradient(field, d_coord, axis):
    return np.gradient(np.gradient(field, d_coord, axis=axis), d_coord, axis=axis)


def laplacian(vorticity, x, y):
    w = vorticity
    w = np.squeeze(w)
    nx, ny = w.shape[-2], w.shape[-1]
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    w_dxx = second_order_gradient(w, dx, axis=1)
    w_dyy = second_order_gradient(w, dy, axis=2)
    return w_dxx + w_dyy


def tf_residual_numpy(w, t, x, y, nu):
    alpha = 0.1
    forced_mode = 2
    dy = y[1] - y[0]
    dx = x[1] - x[0]
    f = forced_mode * np.cos(forced_mode * y)  # Forcing function
    # Broadcast to solution field: nt, nx, ny, 1
    f = np.reshape(f, (1, 1, -1, 1))
    f = np.broadcast_to(f, w.shape)
    # Damping term: alpha * w
    damping = alpha * w
    # Compute dwdt
    dt: float = t[1] - t[0]
    dwdt = np.gradient(w, dt, axis=0)

    #### Stream function distraction ####
    # In order to compute v, we need to compute the stream function psi
    # This is necessary to compute the advection term
    psi = compute_stream_function(w, x, y)
    psi = np.expand_dims(psi, axis=-1)

    #### Final stream function = psi ####
    # compute advection
    adv, vx, vy = advection(w, x, y, compute_stream_function)
    prep_plot = lambda a: np.expand_dims(a, axis=-1)
    advection_terms = {"adv": adv, "vx": vx, "vy": vy}
    #### Continue with adv = v * \nabla w
    lap = laplacian(w, x, y)

    ## Diffusion term
    diffusion = nu * lap

    ### Now compute the new residual
    # desired equation: dwdt = -v * \nabla w + v \nabla^2 w - alpha*w + f
    adv = np.expand_dims(adv, axis=-1)
    diffusion = np.expand_dims(diffusion, axis=-1)

    residual = -1 * dwdt + -1 * adv + diffusion - damping + f
    return residual