SLRNet: A Real-Time LSTM-Based Sign Language Recognition System
Abstract
A real-time sign language recognition system using MediaPipe Holistic and LSTM networks achieves 86.7% validation accuracy for ASL alphabet and functional word classification from webcam video streams.
Sign Language Recognition (SLR) plays a crucial role in bridging the communication gap between the hearing-impaired community and society. This paper introduces SLRNet, a real-time webcam-based ASL recognition system using MediaPipe Holistic and Long Short-Term Memory (LSTM) networks. The model processes video streams to recognize both ASL alphabet letters and functional words. With a validation accuracy of 86.7%, SLRNet demonstrates the feasibility of inclusive, hardware-independent gesture recognition.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper