Refine Thought: A Test-Time Inference Method for Embedding Model Reasoning
Abstract
RT enhances semantic reasoning in text embedding models through multiple forward passes, maintaining general understanding while improving specialized reasoning tasks.
We propose RT (Refine Thought), a method that can enhance the semantic rea-soning ability of text embedding models. The method obtains the final semanticrepresentation by running multiple forward passes of the text embedding model.Experiments show that RT achieves significant improvements on semantic reason-ing tasks in BRIGHT and the person job matching benchmark PJBenchmark1, while maintaining consistent performance on general-purpose semantic under-standing tasks such as C-MTEB. Our results indicate that RT is effective becauseit further activates the semantic reasoning ability learned during pretraining bydecoder-only text embedding models(e.g., Qwen3-Embedding-8B). RT canbe seen as a test-time inference method.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper