AnimaMimic: Imitating 3D Animation from Video Priors
Abstract
Video diffusion models are leveraged to animate 3D meshes by learning motion priors, enabling realistic and editable motion sequences through differentiable rendering and physics-based refinement.
Creating realistic 3D animation remains a time-consuming and expertise-dependent process, requiring manual rigging, keyframing, and fine-tuning of complex motions. Meanwhile, video diffusion models have recently demonstrated remarkable motion imagination in 2D, generating dynamic and visually coherent motion from text or image prompts. However, their results lack explicit 3D structure and cannot be directly used for animation or simulation. We present AnimaMimic, a framework that animates static 3D meshes using motion priors learned from video diffusion models. Starting from an input mesh, AnimaMimic synthesizes a monocular animation video, automatically constructs a skeleton with skinning weights, and refines joint parameters through differentiable rendering and video-based supervision. To further enhance realism, we integrate a differentiable simulation module that refines mesh deformation through physically grounded soft-tissue dynamics. Our method bridges the creativity of video diffusion and the structural control of 3D rigged animation, producing physically plausible, temporally coherent, and artist-editable motion sequences that integrate seamlessly into standard animation pipelines. Our project page is at: https://xpandora.github.io/AnimaMimic/
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper