Abstract
Supervised contrastive learning framework proposed to improve AI text detection reliability across diverse domains and generators.
The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper