new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks

How to efficiently serve Large Language Models (LLMs) has become a pressing issue because of their huge computational cost in their autoregressive generation process. To mitigate computational costs, LLMs often employ the KV Cache technique to improve the generation speed. While improving the computational efficiency, the storage requirements of the KV cache are substantial, particularly in long-context scenarios, leading to significant memory consumption. Existing KV cache eviction methods often degrade the performance of LLMs in long-context scenarios due to the information loss introduced by eviction. In this paper, we propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks without significant performance degradation under constrained memory budgets. Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence. To facilitate merging, we develop an effective yet straightforward merging set identification algorithm to identify suitable KV states for merging. Our merging set identification algorithm stimulates the second observation that KV cache sparsity, from similarity perspective, is independent of the dataset and remains persistent at the model level. Subsequently, we propose a Gaussian kernel weighted merging algorithm to selectively merge all states within each merging set. We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets, applying it to models including Llama2-7B-chat and Llama2-13B-chat. Using the LongBench and ZeroScroll benchmarks, we compare our method with other KV cache compression techniques, including H2O and CaM, showing that our method achieves superior performance across tasks with both 50% and 35% KV cache budgets.

  • 4 authors
·
Jul 11, 2024

Let's (not) just put things in Context: Test-Time Training for Long-Context LLMs

Progress on training and architecture strategies has enabled LLMs with millions of tokens in context length. However, empirical evidence suggests that such long-context LLMs can consume far more text than they can reliably use. On the other hand, it has been shown that inference-time compute can be used to scale performance of LLMs, often by generating thinking tokens, on challenging tasks involving multi-step reasoning. Through controlled experiments on sandbox long-context tasks, we find that such inference-time strategies show rapidly diminishing returns and fail at long context. We attribute these failures to score dilution, a phenomenon inherent to static self-attention. Further, we show that current inference-time strategies cannot retrieve relevant long-context signals under certain conditions. We propose a simple method that, through targeted gradient updates on the given context, provably overcomes limitations of static self-attention. We find that this shift in how inference-time compute is spent leads to consistently large performance improvements across models and long-context benchmarks. Our method leads to large 12.6 and 14.1 percentage point improvements for Qwen3-4B on average across subsets of LongBench-v2 and ZeroScrolls benchmarks. The takeaway is practical: for long context, a small amount of context-specific training is a better use of inference compute than current inference-time scaling strategies like producing more thinking tokens.

  • 11 authors
·
Dec 15, 2025

LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression

This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective. To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT. We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.

  • 13 authors
·
Mar 19, 2024 7