new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Using Convolutional Neural Networks for Determining Reticulocyte Percentage in Cats

Recent advances in artificial intelligence (AI), specifically in computer vision (CV) and deep learning (DL), have created opportunities for novel systems in many fields. In the last few years, deep learning applications have demonstrated impressive results not only in fields such as autonomous driving and robotics, but also in the field of medicine, where they have, in some cases, even exceeded human-level performance. However, despite the huge potential, adoption of deep learning-based methods is still slow in many areas, especially in veterinary medicine, where we haven't been able to find any research papers using modern convolutional neural networks (CNNs) in medical image processing. We believe that using deep learning-based medical imaging can enable more accurate, faster and less expensive diagnoses in veterinary medicine. In order to do so, however, these methods have to be accessible to everyone in this field, not just to computer scientists. To show the potential of this technology, we present results on a real-world task in veterinary medicine that is usually done manually: feline reticulocyte percentage. Using an open source Keras implementation of the Single-Shot MultiBox Detector (SSD) model architecture and training it on only 800 labeled images, we achieve an accuracy of 98.7% at predicting the correct number of aggregate reticulocytes in microscope images of cat blood smears. The main motivation behind this paper is to show not only that deep learning can approach or even exceed human-level performance on a task like this, but also that anyone in the field can implement it, even without a background in computer science.

  • 4 authors
·
Mar 13, 2018

CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model

Image-based virtual try-on enables users to virtually try on different garments by altering original clothes in their photographs. Generative Adversarial Networks (GANs) dominate the research field in image-based virtual try-on, but have not resolved problems such as unnatural deformation of garments and the blurry generation quality. Recently, diffusion models have emerged with surprising performance across various image generation tasks. While the generative quality of diffusion models is impressive, achieving controllability poses a significant challenge when applying it to virtual try-on tasks and multiple denoising iterations limit its potential for real-time applications. In this paper, we propose Controllable Accelerated virtual Try-on with Diffusion Model called CAT-DM. To enhance the controllability, a basic diffusion-based virtual try-on network is designed, which utilizes ControlNet to introduce additional control conditions and improves the feature extraction of garment images. In terms of acceleration, CAT-DM initiates a reverse denoising process with an implicit distribution generated by a pre-trained GAN-based model. Compared with previous try-on methods based on diffusion models, CAT-DM not only retains the pattern and texture details of the in-shop garment but also reduces the sampling steps without compromising generation quality. Extensive experiments demonstrate the superiority of CAT-DM against both GAN-based and diffusion-based methods in producing more realistic images and accurately reproducing garment patterns. Our code and models will be publicly released.

  • 6 authors
·
Nov 30, 2023

CAPro: Webly Supervised Learning with Cross-Modality Aligned Prototypes

Webly supervised learning has attracted increasing attention for its effectiveness in exploring publicly accessible data at scale without manual annotation. However, most existing methods of learning with web datasets are faced with challenges from label noise, and they have limited assumptions on clean samples under various noise. For instance, web images retrieved with queries of tiger cat (a cat species) and drumstick (a musical instrument) are almost dominated by images of tigers and chickens, which exacerbates the challenge of fine-grained visual concept learning. In this case, exploiting both web images and their associated texts is a requisite solution to combat real-world noise. In this paper, we propose Cross-modality Aligned Prototypes (CAPro), a unified prototypical contrastive learning framework to learn visual representations with correct semantics. For one thing, we leverage textual prototypes, which stem from the distinct concept definition of classes, to select clean images by text matching and thus disambiguate the formation of visual prototypes. For another, to handle missing and mismatched noisy texts, we resort to the visual feature space to complete and enhance individual texts and thereafter improve text matching. Such semantically aligned visual prototypes are further polished up with high-quality samples, and engaged in both cluster regularization and noise removal. Besides, we propose collective bootstrapping to encourage smoother and wiser label reference from appearance-similar instances in a manner of dictionary look-up. Extensive experiments on WebVision1k and NUS-WIDE (Web) demonstrate that CAPro well handles realistic noise under both single-label and multi-label scenarios. CAPro achieves new state-of-the-art performance and exhibits robustness to open-set recognition. Codes are available at https://github.com/yuleiqin/capro.

  • 8 authors
·
Oct 15, 2023

LongCat-Image Technical Report

We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models. 1) We achieve this through rigorous data curation strategies across the pre-training, mid-training, and SFT stages, complemented by the coordinated use of curated reward models during the RL phase. This strategy establishes the model as a new state-of-the-art (SOTA), delivering superior text-rendering capabilities and remarkable photorealism, and significantly enhancing aesthetic quality. 2) Notably, it sets a new industry standard for Chinese character rendering. By supporting even complex and rare characters, it outperforms both major open-source and commercial solutions in coverage, while also achieving superior accuracy. 3) The model achieves remarkable efficiency through its compact design. With a core diffusion model of only 6B parameters, it is significantly smaller than the nearly 20B or larger Mixture-of-Experts (MoE) architectures common in the field. This ensures minimal VRAM usage and rapid inference, significantly reducing deployment costs. Beyond generation, LongCat-Image also excels in image editing, achieving SOTA results on standard benchmarks with superior editing consistency compared to other open-source works. 4) To fully empower the community, we have established the most comprehensive open-source ecosystem to date. We are releasing not only multiple model versions for text-to-image and image editing, including checkpoints after mid-training and post-training stages, but also the entire toolchain of training procedure. We believe that the openness of LongCat-Image will provide robust support for developers and researchers, pushing the frontiers of visual content creation.

meituan-longcat LongCat
·
Dec 8, 2025 2

CLoRA: A Contrastive Approach to Compose Multiple LoRA Models

Low-Rank Adaptations (LoRAs) have emerged as a powerful and popular technique in the field of image generation, offering a highly effective way to adapt and refine pre-trained deep learning models for specific tasks without the need for comprehensive retraining. By employing pre-trained LoRA models, such as those representing a specific cat and a particular dog, the objective is to generate an image that faithfully embodies both animals as defined by the LoRAs. However, the task of seamlessly blending multiple concept LoRAs to capture a variety of concepts in one image proves to be a significant challenge. Common approaches often fall short, primarily because the attention mechanisms within different LoRA models overlap, leading to scenarios where one concept may be completely ignored (e.g., omitting the dog) or where concepts are incorrectly combined (e.g., producing an image of two cats instead of one cat and one dog). To overcome these issues, CLoRA addresses them by updating the attention maps of multiple LoRA models and leveraging them to create semantic masks that facilitate the fusion of latent representations. Our method enables the creation of composite images that truly reflect the characteristics of each LoRA, successfully merging multiple concepts or styles. Our comprehensive evaluations, both qualitative and quantitative, demonstrate that our approach outperforms existing methodologies, marking a significant advancement in the field of image generation with LoRAs. Furthermore, we share our source code, benchmark dataset, and trained LoRA models to promote further research on this topic.

  • 4 authors
·
Mar 28, 2024

Purrturbed but Stable: Human-Cat Invariant Representations Across CNNs, ViTs and Self-Supervised ViTs

Cats and humans differ in ocular anatomy. Most notably, Felis Catus (domestic cats) have vertically elongated pupils linked to ambush predation; yet, how such specializations manifest in downstream visual representations remains incompletely understood. We present a unified, frozen-encoder benchmark that quantifies feline-human cross-species representational alignment in the wild, across convolutional networks, supervised Vision Transformers, windowed transformers, and self-supervised ViTs (DINO), using layer-wise Centered Kernel Alignment (linear and RBF) and Representational Similarity Analysis, with additional distributional and stability tests reported in the paper. Across models, DINO ViT-B/16 attains the most substantial alignment (mean CKA-RBF approx0.814, mean CKA-linear approx0.745, mean RSA approx0.698), peaking at early blocks, indicating that token-level self-supervision induces early-stage features that bridge species-specific statistics. Supervised ViTs are competitive on CKA yet show weaker geometric correspondence than DINO (e.g., ViT-B/16 RSA approx0.53 at block8; ViT-L/16 approx0.47 at block14), revealing depth-dependent divergences between similarity and representational geometry. CNNs remain strong baselines but below plain ViTs on alignment, and windowed transformers underperform plain ViTs, implicating architectural inductive biases in cross-species alignment. Results indicate that self-supervision coupled with ViT inductive biases yields representational geometries that more closely align feline and human visual systems than widely used CNNs and windowed Transformers, providing testable neuroscientific hypotheses about where and how cross-species visual computations converge. We release our code and dataset for reference and reproducibility.

  • 2 authors
·
Nov 4, 2025

KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities

Recent advancements in text-to-image generation have significantly enhanced the quality of synthesized images. Despite this progress, evaluations predominantly focus on aesthetic appeal or alignment with text prompts. Consequently, there is limited understanding of whether these models can accurately represent a wide variety of realistic visual entities - a task requiring real-world knowledge. To address this gap, we propose a benchmark focused on evaluating Knowledge-InTensive image generaTion on real-world ENtities (i.e., KITTEN). Using KITTEN, we conduct a systematic study on the fidelity of entities in text-to-image generation models, focusing on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals. We evaluate the latest text-to-image models and retrieval-augmented customization models using both automatic metrics and carefully-designed human evaluations, with an emphasis on the fidelity of entities in the generated images. Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details. Although retrieval-augmented models can enhance the fidelity of entity by incorporating reference images during testing, they often over-rely on these references and struggle to produce novel configurations of the entity as requested in creative text prompts.

  • 11 authors
·
Oct 15, 2024

MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts

Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift--a collection of 12,868 sets of natural images across 410 classes--to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. "cats with cars" or "cats in bathroom") that represent distinct data distributions. MetaShift has two important benefits: first, it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple empirical risk minimization performs the best when shifts are moderate and no method had a systematic advantage for large shifts. We also show how MetaShift can help to visualize conflicts between data subsets during model training.

  • 2 authors
·
Feb 14, 2022

QuadAttack: A Quadratic Programming Approach to Ordered Top-K Attacks

The adversarial vulnerability of Deep Neural Networks (DNNs) has been well-known and widely concerned, often under the context of learning top-1 attacks (e.g., fooling a DNN to classify a cat image as dog). This paper shows that the concern is much more serious by learning significantly more aggressive ordered top-K clear-box~ This is often referred to as white/black-box attacks in the literature. We choose to adopt neutral terminology, clear/opaque-box attacks in this paper, and omit the prefix clear-box for simplicity. targeted attacks proposed in Adversarial Distillation. We propose a novel and rigorous quadratic programming (QP) method of learning ordered top-K attacks with low computing cost, dubbed as QuadAttacK. Our QuadAttacK directly solves the QP to satisfy the attack constraint in the feature embedding space (i.e., the input space to the final linear classifier), which thus exploits the semantics of the feature embedding space (i.e., the principle of class coherence). With the optimized feature embedding vector perturbation, it then computes the adversarial perturbation in the data space via the vanilla one-step back-propagation. In experiments, the proposed QuadAttacK is tested in the ImageNet-1k classification using ResNet-50, DenseNet-121, and Vision Transformers (ViT-B and DEiT-S). It successfully pushes the boundary of successful ordered top-K attacks from K=10 up to K=20 at a cheap budget (1times 60) and further improves attack success rates for K=5 for all tested models, while retaining the performance for K=1.

  • 3 authors
·
Dec 12, 2023

Ultrafast Image Categorization in Biology and Neural Models

Humans are able to categorize images very efficiently, in particular to detect the presence of an animal very quickly. Recently, deep learning algorithms based on convolutional neural networks (CNNs) have achieved higher than human accuracy for a wide range of visual categorization tasks. However, the tasks on which these artificial networks are typically trained and evaluated tend to be highly specialized and do not generalize well, e.g., accuracy drops after image rotation. In this respect, biological visual systems are more flexible and efficient than artificial systems for more general tasks, such as recognizing an animal. To further the comparison between biological and artificial neural networks, we re-trained the standard VGG 16 CNN on two independent tasks that are ecologically relevant to humans: detecting the presence of an animal or an artifact. We show that re-training the network achieves a human-like level of performance, comparable to that reported in psychophysical tasks. In addition, we show that the categorization is better when the outputs of the models are combined. Indeed, animals (e.g., lions) tend to be less present in photographs that contain artifacts (e.g., buildings). Furthermore, these re-trained models were able to reproduce some unexpected behavioral observations from human psychophysics, such as robustness to rotation (e.g., an upside-down or tilted image) or to a grayscale transformation. Finally, we quantified the number of CNN layers required to achieve such performance and showed that good accuracy for ultrafast image categorization can be achieved with only a few layers, challenging the belief that image recognition requires deep sequential analysis of visual objects.

  • 2 authors
·
May 7, 2022