new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 5

SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning

Deep reinforcement learning (DRL) has shown significant promise for uncovering sophisticated control policies that interact in environments with complicated dynamics, such as stabilizing the magnetohydrodynamics of a tokamak fusion reactor or minimizing the drag force exerted on an object in a fluid flow. However, these algorithms require an abundance of training examples and may become prohibitively expensive for many applications. In addition, the reliance on deep neural networks often results in an uninterpretable, black-box policy that may be too computationally expensive to use with certain embedded systems. Recent advances in sparse dictionary learning, such as the sparse identification of nonlinear dynamics (SINDy), have shown promise for creating efficient and interpretable data-driven models in the low-data regime. In this work we introduce SINDy-RL, a unifying framework for combining SINDy and DRL to create efficient, interpretable, and trustworthy representations of the dynamics model, reward function, and control policy. We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems. SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms using significantly fewer interactions in the environment and results in an interpretable control policy orders of magnitude smaller than a deep neural network policy.

  • 4 authors
·
Mar 14, 2024

FluidLab: A Differentiable Environment for Benchmarking Complex Fluid Manipulation

Humans manipulate various kinds of fluids in their everyday life: creating latte art, scooping floating objects from water, rolling an ice cream cone, etc. Using robots to augment or replace human labors in these daily settings remain as a challenging task due to the multifaceted complexities of fluids. Previous research in robotic fluid manipulation mostly consider fluids governed by an ideal, Newtonian model in simple task settings (e.g., pouring). However, the vast majority of real-world fluid systems manifest their complexities in terms of the fluid's complex material behaviors and multi-component interactions, both of which were well beyond the scope of the current literature. To evaluate robot learning algorithms on understanding and interacting with such complex fluid systems, a comprehensive virtual platform with versatile simulation capabilities and well-established tasks is needed. In this work, we introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics. These tasks address interactions between solid and fluid as well as among multiple fluids. At the heart of our platform is a fully differentiable physics simulator, FluidEngine, providing GPU-accelerated simulations and gradient calculations for various material types and their couplings. We identify several challenges for fluid manipulation learning by evaluating a set of reinforcement learning and trajectory optimization methods on our platform. To address these challenges, we propose several domain-specific optimization schemes coupled with differentiable physics, which are empirically shown to be effective in tackling optimization problems featured by fluid system's non-convex and non-smooth properties. Furthermore, we demonstrate reasonable sim-to-real transfer by deploying optimized trajectories in real-world settings.

  • 7 authors
·
Mar 4, 2023

Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs

Solving partial differential equations (PDEs) with machine learning has recently attracted great attention, as PDEs are fundamental tools for modeling real-world systems that range from fundamental physical science to advanced engineering disciplines. Most real-world physical systems across various disciplines are actually involved in multiple coupled physical fields rather than a single field. However, previous machine learning studies mainly focused on solving single-field problems, but overlooked the importance and characteristics of multiphysics problems in real world. Multiphysics PDEs typically entail multiple strongly coupled variables, thereby introducing additional complexity and challenges, such as inter-field coupling. Both benchmarking and solving multiphysics problems with machine learning remain largely unexamined. To identify and address the emerging challenges in multiphysics problems, we mainly made three contributions in this work. First, we collect the first general multiphysics dataset, the Multiphysics Bench, that focuses on multiphysics PDE solving with machine learning. Multiphysics Bench is also the most comprehensive PDE dataset to date, featuring the broadest range of coupling types, the greatest diversity of PDE formulations, and the largest dataset scale. Second, we conduct the first systematic investigation on multiple representative learning-based PDE solvers, such as PINNs, FNO, DeepONet, and DiffusionPDE solvers, on multiphysics problems. Unfortunately, naively applying these existing solvers usually show very poor performance for solving multiphysics. Third, through extensive experiments and discussions, we report multiple insights and a bag of useful tricks for solving multiphysics with machine learning, motivating future directions in the study and simulation of complex, coupled physical systems.

  • 5 authors
·
May 23, 2025

Turbulence modulation in liquid-liquid two-phase Taylor-Couette turbulence

We investigate the coupling effects of the two-phase interface, viscosity ratio, and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor-Couette turbulence at a system Reynolds number of 6000 and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses on four different scenarios: neutral droplets, low-viscosity droplets, light droplets, and low-viscosity light droplets. We find that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement through the two-phase interface, while light droplets reduce the system's drag by explicitly reducing Reynolds stress due to the density dependence of Reynolds stress. Additionally, low-viscosity light droplets contribute to greater drag reduction by further reducing momentum transport near the inner cylinder and implicitly reducing Reynolds stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag enhancement is not strongly correlated with TKE transport for both neutral droplets and low-viscosity droplets. Light droplets primarily reduce the production term by diminishing Reynolds stress, whereas the density contrast between the phases boosts TKE transport near the inner wall. Therefore, the reduction in the dissipation rate is predominantly attributed to decreased turbulence production, causing drag reduction. For low-viscosity light droplets, the production term diminishes further, primarily due to their greater reduction in Reynolds stress, while reduced viscosity weakens the density difference's contribution to TKE transport near the inner cylinder, resulting in a more pronounced reduction in the dissipation rate and consequently stronger drag reduction. Our findings provide new insights into the turbulence modulation in two-phase flow.

  • 6 authors
·
Jul 1, 2024

CFDBench: A Large-Scale Benchmark for Machine Learning Methods in Fluid Dynamics

In recent years, applying deep learning to solve physics problems has attracted much attention. Data-driven deep learning methods produce fast numerical operators that can learn approximate solutions to the whole system of partial differential equations (i.e., surrogate modeling). Although these neural networks may have lower accuracy than traditional numerical methods, they, once trained, are orders of magnitude faster at inference. Hence, one crucial feature is that these operators can generalize to unseen PDE parameters without expensive re-training.In this paper, we construct CFDBench, a benchmark tailored for evaluating the generalization ability of neural operators after training in computational fluid dynamics (CFD) problems. It features four classic CFD problems: lid-driven cavity flow, laminar boundary layer flow in circular tubes, dam flows through the steps, and periodic Karman vortex street. The data contains a total of 302K frames of velocity and pressure fields, involving 739 cases with different operating condition parameters, generated with numerical methods. We evaluate the effectiveness of popular neural operators including feed-forward networks, DeepONet, FNO, U-Net, etc. on CFDBnech by predicting flows with non-periodic boundary conditions, fluid properties, and flow domain shapes that are not seen during training. Appropriate modifications were made to apply popular deep neural networks to CFDBench and enable the accommodation of more changing inputs. Empirical results on CFDBench show many baseline models have errors as high as 300% in some problems, and severe error accumulation when performing autoregressive inference. CFDBench facilitates a more comprehensive comparison between different neural operators for CFD compared to existing benchmarks.

  • 3 authors
·
Sep 13, 2023

Fully Compressible Magnetohydrodynamic Simulations of Solar Convection Zones with CHORUS++

The objective of this study is to develop a fully compressible magnetohydrodynamic solver for fast simulations of the global dynamo of the Sun using unstructured grids and GPUs. Accurate modeling of the Sun's convective layers is vital to predicting the Sun's behavior, including the solar dynamo and sunspot cycles. Currently, there are many efficient codes capable of conducting these large simulations; however, many assume an anealastic density distribution. The anelastic assumption is capable of producing accurate results for low mach numbers; however, it fails in regions with a higher mach number and a fully compressible flow must be considered. To avoid these issues, Wang et al. [1] created a Compressible High-ORder Unstructured Spectral difference (CHORUS) code for simulating fluid dynamics inside stars and planets. CHORUS++ augmented the CHORUS code to adopt a higher degree of polynomials by using cubed-sphere meshing and transfinite mapping to perform simulations on unstructured grids [2]. Recently, CHORUS++ was further developed for parallel magnetohydrodynamic (MHD) solutions on GPUs at Clarkson University. In this study the solar benchmark problems presented by Chen et al. [2] are extended to unsteady solar dynamo problems, with two different density scale heights. The CHORUS-MHD code is further accelerated by multiple GPUs and used to successfully solve these solar dynamo benchmark problems. [1] Wang, J., Liang, C., and Miesch, M. S., "A Compressible High-Order Unstructured Spectral Difference Code for Stratified Convection in Rotating Spherical Shells," Journal of Computational Physics, Vol. 290, 2015, pp. 90-111. [2] Chen, K., Liang, C., and Wan, M., "Arbitrarily high-order accurate simulations of compressible rotationally constrained convection using a transfinite mapping on cubed-sphere grids," Physics of Fluids, Vol. 35, 2023, p. 086120.

  • 2 authors
·
Feb 24, 2025

Solving Navier-Stokes Equations Using Data-free Physics-Informed Neural Networks With Hard Boundary Conditions

In recent years, Physics-Informed Neural Networks (PINNs) have emerged as a powerful and robust framework for solving nonlinear differential equations across a wide range of scientific and engineering disciplines, including biology, geophysics, astrophysics and fluid dynamics. In the PINN framework, the governing partial differential equations, along with initial and boundary conditions, are encoded directly into the loss function, enabling the network to learn solutions that are consistent with the underlying physics. In this work, we employ the PINN framework to solve the dimensionless Navier-Stokes equations for three two-dimensional incompressible, steady, laminar flow problems without using any labeled data. The boundary and initial conditions are enforced in a hard manner, ensuring they are satisfied exactly rather than penalized during training. We validate the PINN predicted velocity profiles, drag coefficients and pressure profiles against the conventional computational fluid dynamics (CFD) simulations for moderate to high values of Reynolds number (Re). It is observed that the PINN predictions show good agreement with the CFD results at lower Re. We also extend our analysis to a transient condition and find that our method is equally capable of simulating complex time-dependent flow dynamics. To quantitatively assess the accuracy, we compute the L_2 normalized error, which lies in the range O(10^{-4}) - O(10^{-1}) for our chosen case studies.

  • 4 authors
·
Nov 18, 2025

Space and Time Continuous Physics Simulation From Partial Observations

Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.

  • 4 authors
·
Jan 17, 2024

PhysicsFormer: An Efficient and Fast Attention-Based Physics Informed Neural Network for Solving Incompressible Navier Stokes Equations

Traditional experimental and numerical approaches for fluid dynamics problems often suffer from high computational cost, mesh sensitivity, and limited capability in capturing complex physical behaviors. Moreover, conventional physics-informed neural networks (PINNs) frequently struggle in chaotic and highly unsteady flow regimes. In this work, we propose PhysicsFormer, a fast and efficient transformer-based physics-informed framework that incorporates multi-head encoder-decoder cross-attention. Unlike multilayer perceptron-based PINNs, PhysicsFormer operates on sequential representations constructed from spatio-temporal data, enabling effective learning of long-range temporal dependencies and improved propagation of initial condition information. A data-embedding strategy is employed to convert spatio-temporal points into pseudo-sequences, while a dynamics-weighted loss function replaces the standard PINNs formulation. Owing to its parallel learning structure, PhysicsFormer demonstrates superior computational efficiency compared to existing transformer-based approaches. The framework is validated on Burgers' equation and flow reconstruction governed by the Navier-Stokes equations, achieving mean squared errors on the order of 10^{-6}. In addition, an inverse problem involving parameter identification in the two-dimensional incompressible Navier-Stokes equations is investigated. For clean data, PhysicsFormer achieves zero identification error for both λ_1 and λ_2; under 1% Gaussian noise, the errors are 0.07% for λ_1 and 0% for λ_2. These results demonstrate that PhysicsFormer provides a reliable and computationally efficient surrogate modeling framework for time-dependent fluid flow problems.

  • 3 authors
·
Jan 7

FISC: A Fluid-Inspired Framework for Decentralized and Scalable Swarm Control

Achieving scalable coordination in large robotic swarms is often constrained by reliance on inter-agent communication, which introduces latency, bandwidth limitations, and vulnerability to failure. To address this gap, a decentralized approach for outer-loop control of large multi-agent systems based on the paradigm of how a fluid moves through a volume is proposed and evaluated. A relationship between fundamental fluidic element properties and individual robotic agent states is developed such that the corresponding swarm "flows" through a space, akin to a fluid when forced via a pressure boundary condition. By ascribing fluid-like properties to subsets of agents, the swarm evolves collectively while maintaining desirable structure and coherence without explicit communication of agent states within or outside of the swarm. The approach is evaluated using simulations involving O(10^3) quadcopter agents and compared against Computational Fluid Dynamics (CFD) solutions for a converging-diverging domain. Quantitative agreement between swarm-derived and CFD fields is assessed using Root-Mean-Square Error (RMSE), yielding normalized errors of 0.15-0.9 for velocity, 0.61-0.98 for density, 0-0.937 for pressure. These results demonstrate the feasibility of treating large robotic swarms as continuum systems that retain the macroscopic structure derived from first principles, providing a basis for scalable and decentralized control.

  • 3 authors
·
Jan 30

Motile Bacteria-laden Droplets Exhibit Reduced Adhesion and Anomalous Wetting Behavior

Hypothesis: Bacterial contamination of surfaces poses a major threat to public health. Designing effective antibacterial or self-cleaning surfaces requires understanding how bacteria-laden droplets interact with solid substrates and how readily they can be removed. We hypothesize that bacterial motility critically influences the early-stage surface interaction (i.e., surface adhesion) of bacteria-laden droplets, which cannot be captured by conventional contact angle goniometry. Experiments: Sessile droplets containing live and dead Escherichia coli (E. coli) were studied to probe their wetting and interfacial behavior. Contact angle goniometry was used to probe dynamic wetting, while a cantilever-deflection-based method was used to quantify adhesion. Internal flow dynamics were visualized using micro-particle image velocimetry (PIV) and analyzed statistically. Complementary sliding experiments on moderately wettable substrates were performed to assess contact line mobility under tilt. Findings: Despite lower surface tension, droplets containing live bacteria exhibited lower surface adhesion forces than their dead counterparts, with adhesion further decreasing at higher bacterial concentrations. Micro-PIV revealed that flagellated live E. coli actively resist evaporation-driven capillary flow via upstream migration, while at higher concentrations, collective dynamics emerge, producing spatially coherent bacterial motion despite temporal variability. These coordinated flows disrupt passive transport and promote depinning of the contact line, thereby reducing adhesion. Sliding experiments confirmed enhanced contact line mobility and frequent stick-slip motion in live droplets, even with lower receding contact angles and higher hysteresis. These findings provide mechanistic insight into droplet retention, informing the design of self-cleaning/antifouling surfaces.

  • 4 authors
·
Oct 28, 2025

Pre-Generating Multi-Difficulty PDE Data for Few-Shot Neural PDE Solvers

A key aspect of learned partial differential equation (PDE) solvers is that the main cost often comes from generating training data with classical solvers rather than learning the model itself. Another is that there are clear axes of difficulty--e.g., more complex geometries and higher Reynolds numbers--along which problems become (1) harder for classical solvers and thus (2) more likely to benefit from neural speedups. Towards addressing this chicken-and-egg challenge, we study difficulty transfer on 2D incompressible Navier-Stokes, systematically varying task complexity along geometry (number and placement of obstacles), physics (Reynolds number), and their combination. Similar to how it is possible to spend compute to pre-train foundation models and improve their performance on downstream tasks, we find that by classically solving (analogously pre-generating) many low and medium difficulty examples and including them in the training set, it is possible to learn high-difficulty physics from far fewer samples. Furthermore, we show that by combining low and high difficulty data, we can spend 8.9x less compute on pre-generating a dataset to achieve the same error as using only high difficulty examples. Our results highlight that how we allocate classical-solver compute across difficulty levels is as important as how much we allocate overall, and suggest substantial gains from principled curation of pre-generated PDE data for neural solvers. Our code is available at https://github.com/Naman-Choudhary-AI-ML/pregenerating-pde

  • 6 authors
·
Nov 29, 2025

An Old-Fashioned Framework for Machine Learning in Turbulence Modeling

The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications.

  • 1 authors
·
Aug 1, 2023

Soap Film Drainage Under Tunable Gravity Using a Centrifugal Thin Film Balance

Surface bubbles are an abundant source of aerosols, with important implications for climate processes. In this context, we investigate the stability and thinning dynamics of soap films under effective gravity fields. Experiments are performed using a centrifugal thin-film balance capable of generating accelerations from 0.2 up to 100 times standard gravity, combined with thin-film interferometry to obtain time-resolved thickness maps. Across all experimental conditions, the drainage dynamics are shown to be governed by capillary suction and marginal regeneration-a mechanism in which thick regions of the film are continuously replaced by thin film elements (TFEs) formed at the meniscus. We consistently recover a thickness ratio of 0.8 - 0.9 between the TFEs and the adjacent film, in agreement with previous observations under standard gravity. The measured thinning rates also follow the predicted scaling laws. We identified that gravity has three distinct effects: (i) it induces a strong stretching of the initial film, extending well beyond the linear-elastic regime; (ii) it controls the meniscus size, and thereby the amplitude of the capillary suction and the drainage rate; and (iii) it reveals an inertia-to-viscous transition in the motion of TFEs within the film. These results are supported by theoretical modeling and highlight the robustness of marginal regeneration and capillary-driven drainage under extreme gravity conditions.

  • 6 authors
·
Nov 11, 2025

New Adaptive Numerical Methods Based on Dual Formulation of Hyperbolic Conservation Laws

In this paper, we propose an adaptive high-order method for hyperbolic systems of conservation laws. The proposed method is based on a dual formulation approach: Two numerical solutions, corresponding to conservative and nonconservative formulations of the same system, are evolved simultaneously. Since nonconservative schemes are known to produce nonphysical weak solutions near discontinuities, we exploit the difference between these two solutions to construct a smoothness indicator (SI). In smooth regions, the difference between the conservative and nonconservative solutions is of the same order as the truncation error of the underlying discretization, whereas in nonsmooth regions, it is {cal O}(1). We apply this idea to the Euler equations of gas dynamics and define the SI using differences in the momentum and pressure variables. This choice allows us to further distinguish neighborhoods of contact discontinuities from other nonsmooth parts of the computed solution. The resulting classification is used to adaptively select numerical discretizations. In the vicinities of contact discontinuities, we employ the low-dissipation central-upwind numerical flux and a second-order piecewise linear reconstruction with the slopes computed using an overcompressive SBM limiter. Elsewhere, we use an alternative weighted essentially non-oscillatory (A-WENO) framework with the central-upwind finite-volume numerical fluxes and either unlimited (in smooth regions) or Ai-WENO-Z (in the nonsmooth regions away from contact discontinuities) fifth-order interpolation. Numerical results for the one- and two-dimensional compressible Euler equations show that the proposed adaptive method improves both the computational efficiency and resolution of complex flow features compared with the non-adaptive fifth-order A-WENO scheme.

  • 4 authors
·
Jan 27

An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass

In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.

  • 3 authors
·
Nov 20, 2024