Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOD3: Optimization-free Dataset Distillation for Object Detection
Training large neural networks on large-scale datasets requires substantial computational resources, particularly for dense prediction tasks such as object detection. Although dataset distillation (DD) has been proposed to alleviate these demands by synthesizing compact datasets from larger ones, most existing work focuses solely on image classification, leaving the more complex detection setting largely unexplored. In this paper, we introduce OD3, a novel optimization-free data distillation framework specifically designed for object detection. Our approach involves two stages: first, a candidate selection process in which object instances are iteratively placed in synthesized images based on their suitable locations, and second, a candidate screening process using a pre-trained observer model to remove low-confidence objects. We perform our data synthesis framework on MS COCO and PASCAL VOC, two popular detection datasets, with compression ratios ranging from 0.25% to 5%. Compared to the prior solely existing dataset distillation method on detection and conventional core set selection methods, OD3 delivers superior accuracy, establishes new state-of-the-art results, surpassing prior best method by more than 14% on COCO mAP50 at a compression ratio of 1.0%. Code and condensed datasets are available at: https://github.com/VILA-Lab/OD3.
Low-dimensional observer design for stable linear systems by model reduction
This paper presents a low-dimensional observer design for stable, single-input single-output, continuous-time linear time-invariant (LTI) systems. Leveraging the model reduction by moment matching technique, we approximate the system with a reduced-order model. Based on this reduced-order model, we design a low-dimensional observer that estimates the states of the original system. We show that this observer establishes exact asymptotic state reconstruction for a given class of inputs tied to the observer's dimension. Furthermore, we establish an exponential input-to-state stability property for generic inputs, ensuring a bounded estimation error. Numerical simulations confirm the effectiveness of the approach for a benchmark model reduction problem.
Prostate-Specific Foundation Models for Enhanced Detection of Clinically Significant Cancer
Accurate prostate cancer diagnosis remains challenging. Even when using MRI, radiologists exhibit low specificity and significant inter-observer variability, leading to potential delays or inaccuracies in identifying clinically significant cancers. This leads to numerous unnecessary biopsies and risks of missing clinically significant cancers. Here we present prostate vision contrastive network (ProViCNet), prostate organ-specific vision foundation models for Magnetic Resonance Imaging (MRI) and Trans-Rectal Ultrasound imaging (TRUS) for comprehensive cancer detection. ProViCNet was trained and validated using 4,401 patients across six institutions, as a prostate cancer detection model on radiology images relying on patch-level contrastive learning guided by biopsy confirmed radiologist annotations. ProViCNet demonstrated consistent performance across multiple internal and external validation cohorts with area under the receiver operating curve values ranging from 0.875 to 0.966, significantly outperforming radiologists in the reader study (0.907 versus 0.805, p<0.001) for mpMRI, while achieving 0.670 to 0.740 for TRUS. We also integrated ProViCNet with standard PSA to develop a virtual screening test, and we showed that we can maintain the high sensitivity for detecting clinically significant cancers while more than doubling specificity from 15% to 38% (p<0.001), thereby substantially reducing unnecessary biopsies. These findings highlight that ProViCNet's potential for enhancing prostate cancer diagnosis accuracy and reduce unnecessary biopsies, thereby optimizing diagnostic pathways.
TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes
Attention guides our gaze to fixate the proper location of the scene and holds it in that location for the deserved amount of time given current processing demands, before shifting to the next one. As such, gaze deployment crucially is a temporal process. Existing computational models have made significant strides in predicting spatial aspects of observer's visual scanpaths (where to look), while often putting on the background the temporal facet of attention dynamics (when). In this paper we present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP), that jointly learns the temporal dynamics of fixations position and duration, integrating deep learning methodologies with point process theory. We conduct extensive experiments across five publicly available datasets. Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches. Source code and trained models are publicly available at: https://github.com/phuselab/tppgaze.
EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
Non-Intrusive Detection of Adversarial Deep Learning Attacks via Observer Networks
Recent studies have shown that deep learning models are vulnerable to specifically crafted adversarial inputs that are quasi-imperceptible to humans. In this letter, we propose a novel method to detect adversarial inputs, by augmenting the main classification network with multiple binary detectors (observer networks) which take inputs from the hidden layers of the original network (convolutional kernel outputs) and classify the input as clean or adversarial. During inference, the detectors are treated as a part of an ensemble network and the input is deemed adversarial if at least half of the detectors classify it as so. The proposed method addresses the trade-off between accuracy of classification on clean and adversarial samples, as the original classification network is not modified during the detection process. The use of multiple observer networks makes attacking the detection mechanism non-trivial even when the attacker is aware of the victim classifier. We achieve a 99.5% detection accuracy on the MNIST dataset and 97.5% on the CIFAR-10 dataset using the Fast Gradient Sign Attack in a semi-white box setup. The number of false positive detections is a mere 0.12% in the worst case scenario.
Modeling Empathetic Alignment in Conversation
Empathy requires perspective-taking: empathetic responses require a person to reason about what another has experienced and communicate that understanding in language. However, most NLP approaches to empathy do not explicitly model this alignment process. Here, we introduce a new approach to recognizing alignment in empathetic speech, grounded in Appraisal Theory. We introduce a new dataset of over 9.2K span-level annotations of different types of appraisals of a person's experience and over 3K empathetic alignments between a speaker's and observer's speech. Through computational experiments, we show that these appraisals and alignments can be accurately recognized. In experiments in over 9.2M Reddit conversations, we find that appraisals capture meaningful groupings of behavior but that most responses have minimal alignment. However, we find that mental health professionals engage with substantially more empathetic alignment.
Deep Variational Bayesian Modeling of Haze Degradation Process
Relying on the representation power of neural networks, most recent works have often neglected several factors involved in haze degradation, such as transmission (the amount of light reaching an observer from a scene over distance) and atmospheric light. These factors are generally unknown, making dehazing problems ill-posed and creating inherent uncertainties. To account for such uncertainties and factors involved in haze degradation, we introduce a variational Bayesian framework for single image dehazing. We propose to take not only a clean image and but also transmission map as latent variables, the posterior distributions of which are parameterized by corresponding neural networks: dehazing and transmission networks, respectively. Based on a physical model for haze degradation, our variational Bayesian framework leads to a new objective function that encourages the cooperation between them, facilitating the joint training of and thereby boosting the performance of each other. In our framework, a dehazing network can estimate a clean image independently of a transmission map estimation during inference, introducing no overhead. Furthermore, our model-agnostic framework can be seamlessly incorporated with other existing dehazing networks, greatly enhancing the performance consistently across datasets and models.
X-Ray-CoT: Interpretable Chest X-ray Diagnosis with Vision-Language Models via Chain-of-Thought Reasoning
Chest X-ray imaging is crucial for diagnosing pulmonary and cardiac diseases, yet its interpretation demands extensive clinical experience and suffers from inter-observer variability. While deep learning models offer high diagnostic accuracy, their black-box nature hinders clinical adoption in high-stakes medical settings. To address this, we propose X-Ray-CoT (Chest X-Ray Chain-of-Thought), a novel framework leveraging Vision-Language Large Models (LVLMs) for intelligent chest X-ray diagnosis and interpretable report generation. X-Ray-CoT simulates human radiologists' "chain-of-thought" by first extracting multi-modal features and visual concepts, then employing an LLM-based component with a structured Chain-of-Thought prompting strategy to reason and produce detailed natural language diagnostic reports. Evaluated on the CORDA dataset, X-Ray-CoT achieves competitive quantitative performance, with a Balanced Accuracy of 80.52% and F1 score of 78.65% for disease diagnosis, slightly surpassing existing black-box models. Crucially, it uniquely generates high-quality, explainable reports, as validated by preliminary human evaluations. Our ablation studies confirm the integral role of each proposed component, highlighting the necessity of multi-modal fusion and CoT reasoning for robust and transparent medical AI. This work represents a significant step towards trustworthy and clinically actionable AI systems in medical imaging.
State Tuning: State-based Test-Time Scaling on RWKV-7
Test-time scaling has emerged as a prominent research direction in machine learning, enabling models to enhance their expressive capabilities during inference.Transformers, renowned for striking a delicate balance between efficiency and expressiveness, have benefited from test-time scaling techniques that leverage an expanding key-value (KV) cache to significantly improve performance.In this paper, we introduce a novel state-based approach to test-time scaling, which we term state tuning, tailored to the RNN-based RWKV-7 model.By exploiting the unique strengths of RWKV-7, our method achieves state-of-the-art performance on the target task without altering the model's pre-trained weights. Our approach centers on three key innovations. First, we develop an observer framework that allows a smaller model to replicate and learn the state dynamics of the RWKV-7 model. Second, we employ a kernel method to dynamically upscale the state size, enhancing the model's capacity to capture intricate patterns. Third, we integrate Decorrelated Backpropagation (DBP) to optimize the upscaled state matrix, thereby improving convergence and expressivity. By tuning only the state matrix, we demonstrate that a smaller model can outperform larger models on the given task. This method preserves the efficiency of the original RWKV-7 architecture while harnessing the power of test-time scaling to deliver superior results. Our findings underscore the potential of state tuning as an effective strategy for advancing model performance in resource-constrained settings. Our code is https://github.com/TorchRWKV/flash-linear-attention.
Quantum Measurement and Observable Universe
In this paper, we discuss that an observable-based single-system Copenhagen and entanglement-based two-system von Neumann measurement protocols in quantum theory can be made equivalent by considering the second part of the two-system scheme to be a Dirac-type negative sea filling up the first system. Based on this equivalence, and by considering the universe as a computational process, the choice of the apparatus state in the two-system protocol can be identified with the choice of the observable in the single-system scheme as negative sea filling up the observable universe. In particular, the measuring party's state is considered to be evolving backwards in time to the big bang as a nondeterministic computational process, which chooses the acceptable path as a time-reversal process of irreversible computation. The suggested model proposes that the prepared microstate of the universe, or reality, corresponds to the observer's choice, therefore, subjective reality. Thus, this effectively provides a specific description of the subjective universe model previously proposed, which is based on the symmetry breakdown between the Schrodinger and the Heisenberg pictures of quantum theory.
DSI-Bench: A Benchmark for Dynamic Spatial Intelligence
Reasoning about dynamic spatial relationships is essential, as both observers and objects often move simultaneously. Although vision-language models (VLMs) and visual expertise models excel in 2D tasks and static scenarios, their ability to fully understand dynamic 3D scenarios remains limited. We introduce Dynamic Spatial Intelligence and propose DSI-Bench, a benchmark with nearly 1,000 dynamic videos and over 1,700 manually annotated questions covering nine decoupled motion patterns of observers and objects. Spatially and temporally symmetric designs reduce biases and enable systematic evaluation of models' reasoning about self-motion and object motion. Our evaluation of 14 VLMs and expert models reveals key limitations: models often conflate observer and object motion, exhibit semantic biases, and fail to accurately infer relative relationships in dynamic scenarios. Our DSI-Bench provides valuable findings and insights about the future development of general and expertise models with dynamic spatial intelligence.
Regional quality estimation for echocardiography using deep learning
Automatic estimation of cardiac ultrasound image quality can be beneficial for guiding operators and ensuring the accuracy of clinical measurements. Previous work often fails to distinguish the view correctness of the echocardiogram from the image quality. Additionally, previous studies only provide a global image quality value, which limits their practical utility. In this work, we developed and compared three methods to estimate image quality: 1) classic pixel-based metrics like the generalized contrast-to-noise ratio (gCNR) on myocardial segments as region of interest and left ventricle lumen as background, obtained using a U-Net segmentation 2) local image coherence derived from a U-Net model that predicts coherence from B-Mode images 3) a deep convolutional network that predicts the quality of each region directly in an end-to-end fashion. We evaluate each method against manual regional image quality annotations by three experienced cardiologists. The results indicate poor performance of the gCNR metric, with Spearman correlation to the annotations of rho = 0.24. The end-to-end learning model obtains the best result, rho = 0.69, comparable to the inter-observer correlation, rho = 0.63. Finally, the coherence-based method, with rho = 0.58, outperformed the classical metrics and is more generic than the end-to-end approach.
Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology
We study a mechanism to produce the circular polarization of primordial gravitational waves. The circular polarization is generated during the super-inflation driven by the Gauss-Bonnet term in the string-inspired cosmology. The instability in the tensor mode caused by the Gauss-Bonnet term and the parity violation due to the gravitational Chern-Simons term are the essential ingredients of the mechanism. We also discuss detectability of the produced circular polarization of gravitational waves. It turns out that the simple model of single-field inflation contradicts CMB observations. To circumvent this difficulty, we propose a two-field inflation model. In this two-field model, the circular polarization of gravitational waves is created in the frequency range designed by the Big-Bang Observer (BBO) or the deci-hertz gravitational-wave observatory (DECIGO).
Assessor360: Multi-sequence Network for Blind Omnidirectional Image Quality Assessment
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs) without relying on pristine-quality image information. It is becoming more significant with the increasing advancement of virtual reality (VR) technology. However, the quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process. To tackle this issue, we propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure. Specifically, we propose a generalized Recursive Probability Sampling (RPS) method for the BOIQA task, combining content and details information to generate multiple pseudo-viewport sequences from a given starting point. Additionally, we design a Multi-scale Feature Aggregation (MFA) module with a Distortion-aware Block (DAB) to fuse distorted and semantic features of each viewport. We also devise Temporal Modeling Module (TMM) to learn the viewport transition in the temporal domain. Extensive experimental results demonstrate that Assessor360 outperforms state-of-the-art methods on multiple OIQA datasets. The code and models are available at https://github.com/TianheWu/Assessor360.
I Am Aligned, But With Whom? MENA Values Benchmark for Evaluating Cultural Alignment and Multilingual Bias in LLMs
We introduce MENAValues, a novel benchmark designed to evaluate the cultural alignment and multilingual biases of large language models (LLMs) with respect to the beliefs and values of the Middle East and North Africa (MENA) region, an underrepresented area in current AI evaluation efforts. Drawing from large-scale, authoritative human surveys, we curate a structured dataset that captures the sociocultural landscape of MENA with population-level response distributions from 16 countries. To probe LLM behavior, we evaluate diverse models across multiple conditions formed by crossing three perspective framings (neutral, personalized, and third-person/cultural observer) with two language modes (English and localized native languages: Arabic, Persian, Turkish). Our analysis reveals three critical phenomena: "Cross-Lingual Value Shifts" where identical questions yield drastically different responses based on language, "Reasoning-Induced Degradation" where prompting models to explain their reasoning worsens cultural alignment, and "Logit Leakage" where models refuse sensitive questions while internal probabilities reveal strong hidden preferences. We further demonstrate that models collapse into simplistic linguistic categories when operating in native languages, treating diverse nations as monolithic entities. MENAValues offers a scalable framework for diagnosing cultural misalignment, providing both empirical insights and methodological tools for developing more culturally inclusive AI.
Beyond the Wavefunction: Qualia Abstraction Language Mechanics and the Grammar of Awareness
We propose a formal reconstruction of quantum mechanics grounded not in external mathematical abstractions, but in the structured dynamics of subjective experience. The Qualia Abstraction Language (QAL) models physical systems as evolving streams of introspective units, structured sequences of modality, shape, and functional effect, rather than as state vectors in Hilbert space. This approach reimagines core quantum concepts: superposition becomes a form of structured ambiguity; collapse is reframed as an introspective contraction; and entanglement is modeled as semantic resonance across streams of qualia. Drawing on insights from nominalist philosophy and oversight theoretic limits in AI, we argue that the observer paradox in quantum mechanics reflects not an ontological lacuna, but a linguistic one: the absence of a formal vocabulary for modeling first person structure. QAL introduces such a vocabulary, providing a morphodynamic framework that embeds the observer within the system and replaces abstract projection with endogenous transformation. We analyze the alignment of QAL with endophysical approaches, contrast it with standard interpretations of quantum theory, and explore its implications for a post Platonist, introspectively grounded physics.
Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion
Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability
Retrieval-Augmented Language Models (RALMs) represent a classic paradigm where models enhance generative capabilities using external knowledge retrieved via a specialized module. Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning. While existing training-based methods show promise, their agentic abilities are limited by inherent characteristics of the task-specific data used during training. To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch. In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans on a large number of pre-training data, thus acquiring universal retrieval and reasoning capabilities for LLMs. After that, the model is trained on downstream tasks to achieve further improvement. We apply both Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) for training. For SFT, we combine agent-based and distillation-based methods to generate training data, starting with a multi-agent system consisting of a planner, rewriter, observer, and followed by a self-evolving teacher model. While for RL, we employ DAPO as the training framework and adopt a hybrid reward system consisting of answer rewards and format rewards. Additionally, we introduce a curriculum learning approach that allows the model to learn progressively from easier to more challenging instances based on the number of masked spans. We evaluate the effectiveness of our framework in the scenario of open-domain multi-hop question answering. Through extensive experiments, we demonstrate that MaskSearch significantly enhances the performance of LLM-based search agents on both in-domain and out-of-domain downstream tasks.
Estimating Time Series Foundation Model Transferability via In-Context Learning
Time series foundation models (TSFMs) offer strong zero-shot forecasting via large-scale pre-training, yet fine-tuning remains critical for boosting performance in domains with limited public data. With the growing number of TSFMs, efficiently identifying the best model for downstream fine-tuning becomes increasingly challenging. In this work, we introduce TimeTic, a transferability estimation framework that recasts model selection as an in-context-learning problem: given observations on known (source) datasets, it predicts how a TSFM will perform after fine-tuning on a downstream (target) dataset. TimeTic flexibly organizes the observed model-data relationships as contextual information, allowing it to adapt seamlessly to various test-time scenarios. Leveraging the natural tabular structure formed by dataset meta-features, model characteristics, and fine-tuned performance, we employ tabular foundation models to serve as in-context learners. We further introduce a novel model characterization based on entropy evolution across model layers, capturing embedding-space distinctions and enabling TimeTic to generalize across arbitrary model sets. We establish a comprehensive benchmark for transferability estimation including 10 datasets, 10 foundation models, and 3 forecasting tasks. On this benchmark, TimeTic's estimation demonstrates strong alignment with actual fine-tuned performance for previously unseen datasets, achieving a mean rank correlation of approximately 0.6 and a 30% improvement compared to using zero-shot performance as the transferability score.
On Large Language Models' Selection Bias in Multi-Choice Questions
Multi-choice questions (MCQs) serve as a common yet important task format in the research of large language models (LLMs). Our work shows that LLMs exhibit an inherent "selection bias" in MCQs, which refers to LLMs' preferences to select options located at specific positions (like "Option C"). This bias is prevalent across various LLMs, making their performance vulnerable to option position changes in MCQs. We identify that one primary cause resulting in selection bias is option numbering, i.e., the ID symbols A/B/C/D associated with the options. To mitigate selection bias, we propose a new method called PriDe. PriDe first decomposes the observed model prediction distribution into an intrinsic prediction over option contents and a prior distribution over option IDs. It then estimates the prior by permutating option contents on a small number of test samples, which is used to debias the subsequent test samples. We demonstrate that, as a label-free, inference-time method, PriDe achieves a more effective and computation-efficient debiasing than strong baselines. We further show that the priors estimated by PriDe generalize well across different domains, highlighting its practical potential in broader scenarios.
Rebuilding ROME : Resolving Model Collapse during Sequential Model Editing
Recent work on model editing using Rank-One Model Editing (ROME), a popular model editing method, has shown that there are certain facts that the algorithm is unable to edit without breaking the model. Such edits have previously been called disabling edits. These disabling edits cause immediate model collapse and limits the use of ROME for sequential editing. In this paper, we make two main contributions. Firstly, we show that model collapse with ROME only happens when making edits using the CounterFact dataset and does not happen when using the zsRE dataset. Secondly, we find that disabling edits are an artifact of the original implementation of ROME. With this paper, we provide a more stable implementation ROME, which we call r-ROME and show that we no longer observe model collapse when making large scale sequential edits with ROME.
The Translation Barrier Hypothesis: Multilingual Generation with Large Language Models Suffers from Implicit Translation Failure
Multilingual generation with large language models (LLMs) is often of poor quality for mid- to low-resource languages. Building on insights from interpretability, we demonstrate the existence of an implicit task-solving-->translation pipeline for generation, whereby the model first solves the required task in a largely target-language-agnostic manner, and subsequently translates answer concepts into the intended target language. We hypothesize that the failure of the translation stage is an important culprit for the observed low quality of final outputs, and formalize this as the translation barrier hypothesis. We test this hypothesis for a word translation task across 108 language pairs, using logit lens to observe model processing in intermediate layers. We find that a significant portion of overall failures indeed stems from translation failure, or the model's inability to translate correctly solved intermediate concepts into the target language. This is especially true for low-resource target languages. Our results highlight an important hurdle for end-to-end multilingual generation, and lend guiding insights for future work seeking to improve multilinguality in LLMs.
