new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 5

LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?

Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce LEGO-Puzzles, a scalable benchmark designed to evaluate both spatial understanding and sequential reasoning in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90\% accuracy. In addition to VQA tasks, we evaluate MLLMs' abilities to generate LEGO images following assembly illustrations. Our experiments show that only Gemini-2.0-Flash and GPT-4o exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.

  • 9 authors
·
Mar 25, 2025 2

Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion

We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io

  • 5 authors
·
Jun 20, 2025

Guess & Sketch: Language Model Guided Transpilation

Maintaining legacy software requires many software and systems engineering hours. Assembly code programs, which demand low-level control over the computer machine state and have no variable names, are particularly difficult for humans to analyze. Existing conventional program translators guarantee correctness, but are hand-engineered for the source and target programming languages in question. Learned transpilation, i.e. automatic translation of code, offers an alternative to manual re-writing and engineering efforts. Automated symbolic program translation approaches guarantee correctness but struggle to scale to longer programs due to the exponentially large search space. Their rigid rule-based systems also limit their expressivity, so they can only reason about a reduced space of programs. Probabilistic neural language models (LMs) produce plausible outputs for every input, but do so at the cost of guaranteed correctness. In this work, we leverage the strengths of LMs and symbolic solvers in a neurosymbolic approach to learned transpilation for assembly code. Assembly code is an appropriate setting for a neurosymbolic approach, since assembly code can be divided into shorter non-branching basic blocks amenable to the use of symbolic methods. Guess & Sketch extracts alignment and confidence information from features of the LM then passes it to a symbolic solver to resolve semantic equivalence of the transpilation input and output. We test Guess & Sketch on three different test sets of assembly transpilation tasks, varying in difficulty, and show that it successfully transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an engineered transpiler. We also share a training and evaluation dataset for this task.

  • 8 authors
·
Sep 25, 2023

Sequence Parallelism: Long Sequence Training from System Perspective

Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.

  • 5 authors
·
May 26, 2021

Manual2Skill: Learning to Read Manuals and Acquire Robotic Skills for Furniture Assembly Using Vision-Language Models

Humans possess an extraordinary ability to understand and execute complex manipulation tasks by interpreting abstract instruction manuals. For robots, however, this capability remains a substantial challenge, as they cannot interpret abstract instructions and translate them into executable actions. In this paper, we present Manual2Skill, a novel framework that enables robots to perform complex assembly tasks guided by high-level manual instructions. Our approach leverages a Vision-Language Model (VLM) to extract structured information from instructional images and then uses this information to construct hierarchical assembly graphs. These graphs represent parts, subassemblies, and the relationships between them. To facilitate task execution, a pose estimation model predicts the relative 6D poses of components at each assembly step. At the same time, a motion planning module generates actionable sequences for real-world robotic implementation. We demonstrate the effectiveness of Manual2Skill by successfully assembling several real-world IKEA furniture items. This application highlights its ability to manage long-horizon manipulation tasks with both efficiency and precision, significantly enhancing the practicality of robot learning from instruction manuals. This work marks a step forward in advancing robotic systems capable of understanding and executing complex manipulation tasks in a manner akin to human capabilities.

  • 10 authors
·
Feb 14, 2025

Learning to Chain Operations by Routing Information Through a Global Workspace

We present a model inspired by the Global Workspace Theory that integrates specialized modules to perform a sequential reasoning task. A controller selectively routes information between modules through the workspace using a gating mechanism. This approach allows the model to chain operations by iteratively broadcasting information between specialized domains, mimicking System-2 reasoning. We evaluate the model's performance on a simple addition task, where two addends must be summed. The task can be solved by routing information sequentially through an Input module, an Increment module (multiple times), and finally an Output module. We consider two implementations of this system with increasing complexity. First, using hand-designed modules operating on one-hot digit representations, the controller (a LSTM recurrent network) learns to select the appropriate modules (input, increment, output) in the appropriate sequence. Second, we replace the hand-designed modules with learned representation modules for MNIST images and an increment module trained on the task objectives; here again, the controller learns the appropriate sequential module selection to solve the task. Finally, we show that the Global Workspace model, while having fewer parameters, outperforms LSTMs and Transformers when tested on unseen addition operations (both interpolations and extrapolations of addition operations seen during training). Our results highlight the potential of architectures inspired by the Global Workspace Theory to enhance deep learning's reasoning capabilities.

  • 2 authors
·
Feb 28, 2025

Text-to-CAD Generation Through Infusing Visual Feedback in Large Language Models

Creating Computer-Aided Design (CAD) models requires significant expertise and effort. Text-to-CAD, which converts textual descriptions into CAD parametric sequences, is crucial in streamlining this process. Recent studies have utilized ground-truth parametric sequences, known as sequential signals, as supervision to achieve this goal. However, CAD models are inherently multimodal, comprising parametric sequences and corresponding rendered visual objects. Besides,the rendering process from parametric sequences to visual objects is many-to-one. Therefore, both sequential and visual signals are critical for effective training. In this work, we introduce CADFusion, a framework that uses Large Language Models (LLMs) as the backbone and alternates between two training stages: the sequential learning (SL) stage and the visual feedback (VF) stage. In the SL stage, we train LLMs using ground-truth parametric sequences, enabling the generation of logically coherent parametric sequences. In the VF stage, we reward parametric sequences that render into visually preferred objects and penalize those that do not, allowing LLMs to learn how rendered visual objects are perceived and evaluated. These two stages alternate throughout the training, ensuring balanced learning and preserving benefits of both signals. Experiments demonstrate that CADFusion significantly improves performance, both qualitatively and quantitatively.

  • 4 authors
·
Jan 31, 2025 2

ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation

In medical and industrial domains, providing guidance for assembly processes can be critical to ensure efficiency and safety. Errors in assembly can lead to significant consequences such as extended surgery times and prolonged manufacturing or maintenance times in industry. Assembly scenarios can benefit from in-situ augmented reality visualization, i.e., augmentations in close proximity to the target object, to provide guidance, reduce assembly times, and minimize errors. In order to enable in-situ visualization, 6D pose estimation can be leveraged to identify the correct location for an augmentation. Existing 6D pose estimation techniques primarily focus on individual objects and static captures. However, assembly scenarios have various dynamics, including occlusion during assembly and dynamics in the appearance of assembly objects. Existing work focus either on object detection combined with state detection, or focus purely on the pose estimation. To address the challenges of 6D pose estimation in combination with assembly state detection, our approach ASDF builds upon the strengths of YOLOv8, a real-time capable object detection framework. We extend this framework, refine the object pose, and fuse pose knowledge with network-detected pose information. Utilizing our late fusion in our Pose2State module results in refined 6D pose estimation and assembly state detection. By combining both pose and state information, our Pose2State module predicts the final assembly state with precision. The evaluation of our ASDF dataset shows that our Pose2State module leads to an improved assembly state detection and that the improvement of the assembly state further leads to a more robust 6D pose estimation. Moreover, on the GBOT dataset, we outperform the pure deep learning-based network and even outperform the hybrid and pure tracking-based approaches.

  • 6 authors
·
Mar 24, 2024

Efficiently Modeling Long Sequences with Structured State Spaces

A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of 10000 or more steps. A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically. However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Our technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling tasks, while performing generation 60times faster (iii) SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.

  • 3 authors
·
Oct 30, 2021

Toward General Instruction-Following Alignment for Retrieval-Augmented Generation

Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (<100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (>100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io.

  • 6 authors
·
Oct 12, 2024 3

ZeCO: Zero Communication Overhead Sequence Parallelism for Linear Attention

Linear attention mechanisms deliver significant advantages for Large Language Models (LLMs) by providing linear computational complexity, enabling efficient processing of ultra-long sequences (e.g., 1M context). However, existing Sequence Parallelism (SP) methods, essential for distributing these workloads across devices, become the primary bottleneck due to substantial communication overhead. In this paper, we introduce ZeCO (Zero Communication Overhead) sequence parallelism for linear attention models, a new SP method designed to overcome these limitations and achieve end-to-end near-linear scalability for long sequence training. For example, training a model with a 1M sequence length across 64 devices using ZeCO takes roughly the same time as training with an 16k sequence on a single device. At the heart of ZeCO lies All-Scan, a new collective communication primitive. All-Scan provides each SP rank with precisely the initial operator state it requires while maintaining a minimal communication footprint, effectively eliminating communication overhead. Theoretically, we prove the optimaity of ZeCO, showing that it introduces only negligible time and space overhead. Empirically, we compare the communication costs of different sequence parallelism strategies and demonstrate that All-Scan achieves the fastest communication in SP scenarios. Specifically, on 256 GPUs with an 8M sequence length, ZeCO achieves a 60\% speedup compared to the current state-of-the-art (SOTA) SP method. We believe ZeCO establishes a clear path toward efficiently training next-generation LLMs on previously intractable sequence lengths.

  • 9 authors
·
Jul 1, 2025 1

CAD-Tokenizer: Towards Text-based CAD Prototyping via Modality-Specific Tokenization

Computer-Aided Design (CAD) is a foundational component of industrial prototyping, where models are defined not by raw coordinates but by construction sequences such as sketches and extrusions. This sequential structure enables both efficient prototype initialization and subsequent editing. Text-guided CAD prototyping, which unifies Text-to-CAD generation and CAD editing, has the potential to streamline the entire design pipeline. However, prior work has not explored this setting, largely because standard large language model (LLM) tokenizers decompose CAD sequences into natural-language word pieces, failing to capture primitive-level CAD semantics and hindering attention modules from modeling geometric structure. We conjecture that a multimodal tokenization strategy, aligned with CAD's primitive and structural nature, can provide more effective representations. To this end, we propose CAD-Tokenizer, a framework that represents CAD data with modality-specific tokens using a sequence-based VQ-VAE with primitive-level pooling and constrained decoding. This design produces compact, primitive-aware representations that align with CAD's structural nature. Applied to unified text-guided CAD prototyping, CAD-Tokenizer significantly improves instruction following and generation quality, achieving better quantitative and qualitative performance over both general-purpose LLMs and task-specific baselines.

microsoft Microsoft
·
Sep 25, 2025 2

Sparse Modular Activation for Efficient Sequence Modeling

Linear State Space Models (SSMs) have demonstrated strong performance in a variety of sequence modeling tasks due to their efficient encoding of the recurrent structure. However, in more comprehensive tasks like language modeling and machine translation, self-attention-based models still outperform SSMs. Hybrid models employing both SSM and self-attention generally show promising performance, but current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. In this work, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption at both training and inference stages of sequence modeling. As a specific instantiation of SMA, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including language modeling, speech classification and long-range arena, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity and reveals the amount of attention needed for each task through the learned sparse activation patterns.

  • 6 authors
·
Jun 19, 2023

Data-Centric and Heterogeneity-Adaptive Sequence Parallelism for Efficient LLM Training

Extending the context length (i.e., the maximum supported sequence length) of LLMs is of paramount significance. To facilitate long context training of LLMs, sequence parallelism has emerged as an essential technique, which scatters each input sequence across multiple devices and necessitates communication to process the sequence. In essence, existing sequence parallelism methods assume homogeneous sequence lengths (i.e., all input sequences are equal in length) and therefore leverages a single, static scattering strategy for all input sequences. However, in reality, the sequence lengths in LLM training corpora exhibit substantial variability, often following a long-tail distribution, which leads to workload heterogeneity. In this paper, we show that employing a single, static strategy results in inefficiency and resource under-utilization, highlighting the need for adaptive approaches to handle the heterogeneous workloads across sequences. To address this, we propose a heterogeneity-adaptive sequence parallelism method. For each training step, our approach captures the variability in sequence lengths and assigns the optimal combination of scattering strategies based on workload characteristics. We model this problem as a linear programming optimization and design an efficient and effective solver to find the optimal solution. Furthermore, we implement our method in a high-performance system that supports adaptive parallelization in distributed LLM training. Experimental results demonstrate that our system outperforms state-of-the-art training frameworks by up to 1.98x.

  • 10 authors
·
Dec 2, 2024

CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation

Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.

  • 6 authors
·
May 7, 2025

LASP-2: Rethinking Sequence Parallelism for Linear Attention and Its Hybrid

Linear sequence modeling approaches, such as linear attention, provide advantages like linear-time training and constant-memory inference over sequence lengths. However, existing sequence parallelism (SP) methods are either not optimized for the right-product-first feature of linear attention or use a ring-style communication strategy, which results in lower computation parallelism, limits their scalability for longer sequences in distributed systems. In this paper, we introduce LASP-2, a new SP method to enhance both communication and computation parallelism when training linear attention transformer models with very-long input sequences. Compared to previous work LASP, LASP-2 rethinks the minimal communication requirement for SP on linear attention layers, reorganizes the whole communication-computation workflow of LASP. In this way, only one single AllGather collective communication is needed on intermediate memory states, whose sizes are independent of the sequence length, leading to significant improvements of both communication and computation parallelism, as well as their overlap. Additionally, we extend LASP-2 to LASP-2H by applying similar communication redesign to standard attention modules, offering an efficient SP solution for hybrid models that blend linear and standard attention layers. Our evaluation on a Linear-Llama3 model, a variant of Llama3 with linear attention replacing standard attention, demonstrates the effectiveness of LASP-2 and LASP-2H. Specifically, LASP-2 achieves training speed improvements of 15.2% over LASP and 36.6% over Ring Attention, with a sequence length of 2048K across 64 GPUs. The Code is released as a part of: https://github.com/OpenSparseLLMs/Linear-MoE.

  • 5 authors
·
Feb 11, 2025 2

Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions

With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. However, AI-driven products that leverage language models usually necessitate a fusion of these abilities to function effectively in real-world scenarios. Moreover, the considerable computational resources required for proper alignment of LLMs underscore the need for a more robust, efficient, and encompassing approach to multi-task alignment, ensuring improved generative performance. In response to these challenges, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.

  • 4 authors
·
Apr 28, 2024

Order Matters: Sequence to sequence for sets

Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.

  • 3 authors
·
Nov 19, 2015

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13, 2025

Structured State Space Models for In-Context Reinforcement Learning

Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks. These models also have fast inference speeds and parallelisable training, making them potentially useful in many reinforcement learning settings. We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel, allowing us to tackle reinforcement learning tasks. We show that our modified architecture runs asymptotically faster than Transformers in sequence length and performs better than RNN's on a simple memory-based task. We evaluate our modified architecture on a set of partially-observable environments and find that, in practice, our model outperforms RNN's while also running over five times faster. Then, by leveraging the model's ability to handle long-range sequences, we achieve strong performance on a challenging meta-learning task in which the agent is given a randomly-sampled continuous control environment, combined with a randomly-sampled linear projection of the environment's observations and actions. Furthermore, we show the resulting model can adapt to out-of-distribution held-out tasks. Overall, the results presented in this paper show that structured state space models are fast and performant for in-context reinforcement learning tasks. We provide code at https://github.com/luchris429/popjaxrl.

  • 7 authors
·
Mar 7, 2023

Text-to-CadQuery: A New Paradigm for CAD Generation with Scalable Large Model Capabilities

Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.

  • 2 authors
·
May 10, 2025

An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction

Data of sequential nature arise in many application domains in forms of, e.g. textual data, DNA sequences, and software execution traces. Different research disciplines have developed methods to learn sequence models from such datasets: (i) in the machine learning field methods such as (hidden) Markov models and recurrent neural networks have been developed and successfully applied to a wide-range of tasks, (ii) in process mining process discovery techniques aim to generate human-interpretable descriptive models, and (iii) in the grammar inference field the focus is on finding descriptive models in the form of formal grammars. Despite their different focuses, these fields share a common goal - learning a model that accurately describes the behavior in the underlying data. Those sequence models are generative, i.e, they can predict what elements are likely to occur after a given unfinished sequence. So far, these fields have developed mainly in isolation from each other and no comparison exists. This paper presents an interdisciplinary experimental evaluation that compares sequence modeling techniques on the task of next-element prediction on four real-life sequence datasets. The results indicate that machine learning techniques that generally have no aim at interpretability in terms of accuracy outperform techniques from the process mining and grammar inference fields that aim to yield interpretable models.

  • 3 authors
·
Oct 31, 2018

Automatic Chain of Thought Prompting in Large Language Models

Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot

  • 4 authors
·
Oct 7, 2022

Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control

Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.

  • 2 authors
·
Oct 11, 2024

Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning

Large reasoning models (LRMs) have demonstrated strong performance in complex, multi-step reasoning tasks. Existing methods enhance LRMs by sequentially integrating external knowledge retrieval; models iteratively generate queries, retrieve external information, and progressively reason over this information. However, purely sequential querying increases inference latency and context length, diminishing coherence and potentially reducing accuracy. To address these limitations, we introduce HDS-QA (Hybrid Deep Search QA), a synthetic dataset automatically generated from Natural Questions, explicitly designed to train LRMs to distinguish parallelizable from sequential queries. HDS-QA comprises hybrid-hop questions that combine parallelizable independent subqueries (executable simultaneously) and sequentially dependent subqueries (requiring step-by-step resolution), along with synthetic reasoning-querying-retrieval paths involving parallel queries. We fine-tune an LRM using HDS-QA, naming the model HybridDeepSearcher, which outperforms state-of-the-art baselines across multiple benchmarks, notably achieving +15.9 and +11.5 F1 on FanOutQA and a subset of BrowseComp, respectively, both requiring comprehensive and exhaustive search. Experimental results highlight two key advantages: HybridDeepSearcher reaches comparable accuracy with fewer search turns, significantly reducing inference latency, and it effectively scales as more turns are permitted. These results demonstrate the efficiency, scalability, and effectiveness of explicitly training LRMs to leverage hybrid parallel and sequential querying.

  • 9 authors
·
Aug 26, 2025

Batch Speculative Decoding Done Right

Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3times throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.

ThreadWeaver: Adaptive Threading for Efficient Parallel Reasoning in Language Models

Scaling inference-time computation has enabled Large Language Models (LLMs) to achieve strong reasoning performance, but inherently sequential decoding leads to substantial latency, especially on complex tasks. Recent work on adaptive parallel reasoning aims to improve inference efficiency by decomposing the problem-solving process into concurrent reasoning threads when beneficial. However, existing methods on realistic tasks are either limited to supervised behavior cloning or exhibit significant accuracy drops compared to widely-used sequential long chain-of-thought (CoT) baselines. Moreover, many require customized inference engines, complicating deployment. We introduce ThreadWeaver, a framework for adaptive parallel reasoning that achieves accuracy on par with popular sequential reasoning models of comparable size while significantly reducing inference latency. ThreadWeaver's performance stems from three key innovations: 1) a two-stage parallel trajectory generator that produces large-scale, high-quality CoT data with parallel annotations for supervised fine-tuning; 2) a trie-based training-inference co-design that enables parallel reasoning on any off-the-shelf autoregressive inference engine without modifying position embeddings or KV caches; and 3) a parallelization-aware reinforcement learning framework that teaches the model to balance accuracy with effective parallelization. Across six challenging mathematical reasoning benchmarks, ThreadWeaver trained atop Qwen3-8B achieves accuracy comparable to cutting-edge sequential reasoning models (71.9% on average and 79.9% on AIME24) while delivering up to 1.53x average speedup in token latency, establishing a new Pareto frontier between accuracy and efficiency.

  • 10 authors
·
Nov 24, 2025 3

Generating Coherent Sequences of Visual Illustrations for Real-World Manual Tasks

Multistep instructions, such as recipes and how-to guides, greatly benefit from visual aids, such as a series of images that accompany the instruction steps. While Large Language Models (LLMs) have become adept at generating coherent textual steps, Large Vision/Language Models (LVLMs) are less capable of generating accompanying image sequences. The most challenging aspect is that each generated image needs to adhere to the relevant textual step instruction, as well as be visually consistent with earlier images in the sequence. To address this problem, we propose an approach for generating consistent image sequences, which integrates a Latent Diffusion Model (LDM) with an LLM to transform the sequence into a caption to maintain the semantic coherence of the sequence. In addition, to maintain the visual coherence of the image sequence, we introduce a copy mechanism to initialise reverse diffusion processes with a latent vector iteration from a previously generated image from a relevant step. Both strategies will condition the reverse diffusion process on the sequence of instruction steps and tie the contents of the current image to previous instruction steps and corresponding images. Experiments show that the proposed approach is preferred by humans in 46.6% of the cases against 26.6% for the second best method. In addition, automatic metrics showed that the proposed method maintains semantic coherence and visual consistency across steps in both domains.

  • 8 authors
·
May 16, 2024

MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences

Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes can be found at https://github.com/skyhehe123/MSF.

  • 5 authors
·
Mar 14, 2023

RLAP: A Reinforcement Learning Enhanced Adaptive Planning Framework for Multi-step NLP Task Solving

Multi-step planning has been widely employed to enhance the performance of large language models (LLMs) on downstream natural language processing (NLP) tasks, which decomposes the original task into multiple subtasks and guide LLMs to solve them sequentially without additional training. When addressing task instances, existing methods either preset the order of steps or attempt multiple paths at each step. However, these methods overlook instances' linguistic features and rely on the intrinsic planning capabilities of LLMs to evaluate intermediate feedback and then select subtasks, resulting in suboptimal outcomes. To better solve multi-step NLP tasks with LLMs, in this paper we propose a Reinforcement Learning enhanced Adaptive Planning framework (RLAP). In our framework, we model an NLP task as a Markov decision process (MDP) and employ an LLM directly into the environment. In particular, a lightweight Actor model is trained to estimate Q-values for natural language sequences consisting of states and actions through reinforcement learning. Therefore, during sequential planning, the linguistic features of each sequence in the MDP can be taken into account, and the Actor model interacts with the LLM to determine the optimal order of subtasks for each task instance. We apply RLAP on three different types of NLP tasks and conduct extensive experiments on multiple datasets to verify RLAP's effectiveness and robustness.

  • 6 authors
·
May 17, 2025

MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba

Recently, State Space Models (SSMs), with Mamba as a prime example, have shown great promise for long-range dependency modeling with linear complexity. Then, Vision Mamba and the subsequent architectures are presented successively, and they perform well on visual tasks. The crucial step of applying Mamba to visual tasks is to construct 2D visual features in sequential manners. To effectively organize and construct visual features within the 2D image space through 1D selective scan, we propose a novel Multi-Head Scan (MHS) module. The embeddings extracted from the preceding layer are projected into multiple lower-dimensional subspaces. Subsequently, within each subspace, the selective scan is performed along distinct scan routes. The resulting sub-embeddings, obtained from the multi-head scan process, are then integrated and ultimately projected back into the high-dimensional space. Moreover, we incorporate a Scan Route Attention (SRA) mechanism to enhance the module's capability to discern complex structures. To validate the efficacy of our module, we exclusively substitute the 2D-Selective-Scan (SS2D) block in VM-UNet with our proposed module, and we train our models from scratch without using any pre-trained weights. The results indicate a significant improvement in performance while reducing the parameters of the original VM-UNet. The code for this study is publicly available at https://github.com/PixDeep/MHS-VM.

  • 1 authors
·
Jun 9, 2024

FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering

Large Language Models (LLMs) with chain-of-thought (COT) prompting have demonstrated impressive abilities on simple nature language inference tasks. However, they tend to perform poorly on Multi-hop Question Answering (MHQA) tasks due to several challenges, including hallucination, error propagation and limited context length. We propose a prompting method, Finite State Machine (FSM) to enhance the reasoning capabilities of LLM for complex tasks in addition to improved effectiveness and trustworthiness. Different from COT methods, FSM addresses MHQA by iteratively decomposing a question into multi-turn sub-questions, and self-correcting in time, improving the accuracy of answers in each step. Specifically, FSM addresses one sub-question at a time and decides on the next step based on its current result and state, in an automaton-like format. Experiments on benchmarks show the effectiveness of our method. Although our method performs on par with the baseline on relatively simpler datasets, it excels on challenging datasets like Musique. Moreover, this approach mitigates the hallucination phenomenon, wherein the correct final answer can be recovered despite errors in intermediate reasoning. Furthermore, our method improves LLMs' ability to follow specified output format requirements, significantly reducing the difficulty of answer interpretation and the need for reformatting.

  • 7 authors
·
Jul 3, 2024

TiM4Rec: An Efficient Sequential Recommendation Model Based on Time-Aware Structured State Space Duality Model

The Sequential Recommendation modeling paradigm is shifting from Transformer to Mamba architecture, which comprises two generations: Mamba1, based on the State Space Model (SSM), and Mamba2, based on State Space Duality (SSD). Although SSD offers superior computational efficiency compared to SSM, it suffers performance degradation in sequential recommendation tasks, especially in low-dimensional scenarios that are critical for these tasks. Considering that time-aware enhancement methods are commonly employed to mitigate performance loss, our analysis reveals that the performance decline of SSD can similarly be fundamentally compensated by leveraging mechanisms in time-aware methods. Thus, we propose integrating time-awareness into the SSD framework to address these performance issues. However, integrating current time-aware methods, modeled after TiSASRec, into SSD faces the following challenges: 1) the complexity of integrating these transformer-based mechanisms with the SSD architecture, and 2) the computational inefficiency caused by the need for dimensionality expansion of time-difference modeling. To overcome these challenges, we introduce a novel Time-aware Structured Masked Matrix that efficiently incorporates time-aware capabilities into SSD. Building on this, we propose Time-Aware Mamba for Recommendation (TiM4Rec), which mitigates performance degradation in low-dimensional SSD contexts while preserving computational efficiency. This marks the inaugural application of a time-aware enhancement method specifically tailored for the Mamba architecture within the domain of sequential recommendation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our approach. The code for our model is accessible at https://github.com/AlwaysFHao/TiM4Rec.

  • 7 authors
·
Sep 24, 2024

Improving Translation Faithfulness of Large Language Models via Augmenting Instructions

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

  • 6 authors
·
Aug 24, 2023

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5times higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.

  • 2 authors
·
Dec 1, 2023 12

A Survey on Structured State Space Sequence (S4) Models

Recent advancements in sequence modeling have led to the emergence of Structured State Space Models (SSMs) as an efficient alternative to Recurrent Neural Networks (RNNs) and Transformers, addressing challenges in long-range dependency modeling and computational efficiency. While RNNs suffer from vanishing gradients and sequential inefficiencies, and Transformers face quadratic complexity, SSMs leverage structured recurrence and state-space representations to achieve superior long-sequence processing with linear or near-linear complexity. This survey provides a comprehensive review of SSMs, tracing their evolution from the foundational S4 model to its successors like Mamba, Simplified Structured State Space Sequence Model (S5), and Jamba, highlighting their improvements in computational efficiency, memory optimization, and inference speed. By comparing SSMs with traditional sequence models across domains such as natural language processing (NLP), speech recognition, vision, and time-series forecasting, we demonstrate their advantages in handling long-range dependencies while reducing computational overhead. Despite their potential, challenges remain in areas such as training optimization, hybrid modeling, and interpretability. This survey serves as a structured guide for researchers and practitioners, detailing the advancements, trade-offs, and future directions of SSM-based architectures in AI and deep learning.

  • 6 authors
·
Mar 21, 2025 1

TokenRing: An Efficient Parallelism Framework for Infinite-Context LLMs via Bidirectional Communication

Efficient parallelization of Large Language Models (LLMs) with long sequences is essential but challenging due to their significant computational and memory demands, particularly stemming from communication bottlenecks in attention mechanisms. While sequence parallelism (SP) has been introduced as a potential solution, existing methods often suffer from limited scalability or inefficiency, rendering their effectiveness. Ring-Attention demonstrates the potential for scaling sequence processing but faces significant limitations due to its reliance on peer-to-peer (P2P) communication and inefficient utilization of network resources. As the degree of SP increases, the quadratic decrease in computation time per step contrasts sharply with the linear reduction in communication volume, exacerbating communication bottlenecks. To address these challenges, we propose TokenRing, a fine-grained parallel framework that leverages bidirectional P2P communication to effectively overlap computation and data transmission. By partitioning the attention block and concurrently transmitting Query and block outputs (i.e., block_out and block_lse) within a fully connected mesh topology, TokenRing achieves significant reductions in communication overhead and better load balancing. These innovations improve the scalability and efficiency of distributed Transformer models, particularly for long-context sequences. Experimental results demonstrate that TokenRing enhances throughput and reduces communication latency. Moreover, its design adapts seamlessly to various multi-GPU interconnect solutions, such as Huawei Ascend, ensuring broad compatibility and cost-effectiveness for distributed LLM inference and training. The code is available at: https://github.com/ACA-Lab-SJTU/token-ring.

  • 4 authors
·
Dec 29, 2024

SLMRec: Distilling Large Language Models into Small for Sequential Recommendation

Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.

  • 8 authors
·
May 28, 2024

SALT4Decompile: Inferring Source-level Abstract Logic Tree for LLM-Based Binary Decompilation

Decompilation is widely used in reverse engineering to recover high-level language code from binary executables. While recent approaches leveraging Large Language Models (LLMs) have shown promising progress, they typically treat assembly code as a linear sequence of instructions, overlooking arbitrary jump patterns and isolated data segments inherent to binary files. This limitation significantly hinders their ability to correctly infer source code semantics from assembly code. To address this limitation, we propose \saltm, a novel binary decompilation method that abstracts stable logical features shared between binary and source code. The core idea of \saltm is to abstract selected binary-level operations, such as specific jumps, into a high-level logic framework that better guides LLMs in semantic recovery. Given a binary function, \saltm constructs a Source-level Abstract Logic Tree (\salt) from assembly code to approximate the logic structure of high-level language. It then fine-tunes an LLM using the reconstructed \salt to generate decompiled code. Finally, the output is refined through error correction and symbol recovery to improve readability and correctness. We compare \saltm to three categories of baselines (general-purpose LLMs, commercial decompilers, and decompilation methods) using three well-known datasets (Decompile-Eval, MBPP, Exebench). Our experimental results demonstrate that \saltm is highly effective in recovering the logic of the source code, significantly outperforming state-of-the-art methods (e.g., 70.4\% TCP rate on Decompile-Eval with a 10.6\% improvement). The results further validate its robustness against four commonly used obfuscation techniques. Additionally, analyses of real-world software and a user study confirm that our decompiled output offers superior assistance to human analysts in comprehending binary functions.

  • 5 authors
·
Sep 18, 2025

Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation

Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose ReaRec, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.

  • 8 authors
·
Mar 28, 2025 2

Rethinking Thinking Tokens: LLMs as Improvement Operators

Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).

  • 9 authors
·
Oct 1, 2025 2

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

  • 10 authors
·
Nov 28, 2022

DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5X faster with 4X longer sequence length than the existing method SOTA baseline.

  • 7 authors
·
Sep 25, 2023 1

From CISC to RISC: language-model guided assembly transpilation

The transition from x86 to ARM architecture is becoming increasingly common across various domains, primarily driven by ARM's energy efficiency and improved performance across traditional sectors. However, this ISA shift poses significant challenges, mainly due to the extensive legacy ecosystem of x86 software and lack of portability across proprietary ecosystems and software stacks. This paper introduces CRT, a lightweight LLM-based transpiler that automatically converts x86 assembly to ARM assembly. Our approach bridges the fundamental architectural gap between x86's CISC-based and ARM's RISC-based computing paradigms while preserving program semantics and optimizing performance. We evaluate CRT on diverse real-world applications, achieving 79.25% translation accuracy from x86 to ARMv5 on our comprehensive test suite, and an 88.68% accuracy from x86 to RISC-V. In practical deployments on Apple M2 hardware (ARMv8), our transpiled code achieves 1.73times speedup compared to Apple's Rosetta 2 virtualization engine, while delivering 2.41times memory efficiency and 1.47times better energy consumption. Through testing and analysis, we show that CRT successfully navigates the CISC/RISC divide and generates correctly executable RISC code despite machine ``language'' barriers. We release our code, models, training datasets, and benchmarks at: https://ahmedheakl.github.io/asm2asm/.