ARC-8B: Adaptive Repetition Controller

ARC-8B: Adaptive Repetition Controller

Decode-Time Behavioral Intervention via Contrastive Fiber Heads-on-Thought (CF-HoT)


License: CC BY 4.0 Python 3.10+ PyTorch 2.0+ Transformers

Author: Logan Matthew Napolitano
Institution: Logan Research
Release Date: January 2026

📖 Abstract | 🚀 Quick Start | 🔬 Method | 📊 Results | 💻 Usage


TL;DR

We observe that RLHF-aligned language models often expend a substantial fraction of their token budget on learned behavioral patterns (hedging, sycophancy, verbosity, repetition). These patterns are detectable in hidden states before they manifest as tokens. ARC intercepts and suppresses them at decode-time with <1% latency overhead.

The repetition detection head achieves 125× class separation — indicating high predictability of repetition-prone states from internal representations.


Abstract

Reinforcement Learning from Human Feedback (RLHF) has become the standard approach for aligning large language models with human preferences. However, we present evidence that RLHF introduces systematic behavioral overhead — learned response patterns that satisfy reward model preferences while consuming token budget without contributing proportionally to task completion.

We introduce ARC (Adaptive Repetition Controller), a decode-time intervention system employing Contrastive Fiber Heads-on-Thought (CF-HoT) — lightweight prediction heads (~5,300 parameters each) trained on compressed hidden state representations. These heads detect behavioral failure modes including:

Behavior Separation What It Detects
Repetition 125× Semantic loops, token-level repetition
Verbosity 2.1× Filler phrases, unnecessary elaboration
Hedging 1.5× Epistemic disclaimers, capability denials
Sycophancy experimental Excessive affirmation, approval-seeking

Our key finding: behavioral failure modes are linearly separable in a 16-dimensional projection of transformer hidden states, enabling real-time intervention with minimal computational overhead.

Headline Results

  • 91% reduction in repetition instances
  • 38% improvement in information density (heuristically estimated)
  • <1% latency overhead
  • ~5,300 parameters per detection head

Table of Contents

  1. Introduction
  2. Background
  3. Method: Contrastive Fiber Heads-on-Thought
  4. Mathematical Formulation
  5. Experimental Setup
  6. Experimental Results
  7. Ablation Studies
  8. Qualitative Analysis
  9. Comprehensive Usage Guide
  10. Repository Structure
  11. Limitations
  12. Ethical Considerations
  13. Future Directions
  14. Citation
  15. Acknowledgments

1. Introduction

1.1 The Problem: RLHF Behavioral Patterns

Consider a typical RLHF-aligned model response to "hello":

User: hello

Typical Response: Hello! I'm an AI assistant created to help you with a wide 
variety of tasks. How can I assist you today? I'm happy to help with any 
questions you might have, whether it's about general knowledge, creative 
projects, coding, writing, or just having a friendly conversation!

We observe several patterns that consume tokens without proportional information gain:

  • Identity declarations
  • Vague capability claims
  • Approval-seeking phrases
  • Redundant invitations

This is the RLHF behavioral pattern: learned responses that score well on reward models but may dilute information density.

1.2 Our Solution: Decode-Time Intervention

Core Insight: Behavioral failure modes correspond to identifiable directions in activation space. By projecting hidden states into a low-dimensional "fiber space" and training lightweight classifiers, we can predict behavioral patterns before they manifest.

ARC Response to "hello":

User: hello

ARC Model: Hello. What do you need?

1.3 Key Contributions

  1. Empirical demonstration that RLHF behavioral patterns are linearly separable in hidden states
  2. CF-HoT architecture for efficient decode-time detection and intervention
  3. 125× class separation for repetition detection
  4. Complete open-source release of model, heads, and inference code

2. Background

2.1 RLHF and Behavioral Patterns

RLHF (Ouyang et al., 2022) trains language models to maximize a learned reward function approximating human preferences. We identify several emergent patterns:

Pattern Reward Model Signal Trade-off
Hedging Perceived carefulness May reduce response confidence
Sycophancy Perceived friendliness Low information density
Verbosity Perceived thoroughness Signal dilution
Repetition Perceived emphasis Context window consumption

Observation: Reward models may optimize for surface features correlated with quality rather than quality itself.

2.2 Activation Engineering

Recent work in mechanistic interpretability shows that high-level behaviors correspond to directions in activation space:

  • Representation Engineering (Zou et al., 2023): Steering model behavior via activation addition
  • Activation Addition (Turner et al., 2023): Linear interventions for behavioral control
  • Probing Classifiers (Belinkov, 2022): Detecting properties from hidden states

ARC extends this work to real-time decode-time intervention.

2.3 Related Work

Approach When Overhead Reversible
Fine-tuning Training High No
RLHF modification Training High No
Prompt engineering Inference None Yes
Activation steering Inference Medium Yes
ARC (ours) Decode-time <1% Yes

3. Method: Contrastive Fiber Heads-on-Thought

3.1 Architecture Overview

┌─────────────────────────────────────────────────────────────────────────────┐
│                         ARC SYSTEM ARCHITECTURE                              │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │                    BASE MODEL (frozen)                           │      │
│    │                 Hermes-3-Llama-3.1-8B                            │      │
│    │                     8.03B parameters                             │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │                    HIDDEN STATES                                 │      │
│    │              h_l ∈ ℝ^4096 for l = 1...32                         │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │              FIBER PROJECTIONS (learned)                         │      │
│    │           W_l ∈ ℝ^(16×4096) for l = 1...32                       │      │
│    │                f_l = W_l · h_l ∈ ℝ^16                            │      │
│    │                                                                  │      │
│    │    Compression: 4096 → 16 dimensions (256× reduction)            │      │
│    │    Total params: 32 × 4096 × 16 = 2,097,152                      │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │              LAYER AGGREGATION (learned weights)                 │      │
│    │                                                                  │      │
│    │              α = softmax(w) where w ∈ ℝ^32                       │      │
│    │              f_agg = Σ α_l · f_l ∈ ℝ^16                          │      │
│    │                                                                  │      │
│    │    Observation: Different layers encode different behaviors      │      │
│    │    - Layers 18-24: Repetition patterns (highest weight)          │      │
│    │    - Layers 8-14: Hedging patterns                               │      │
│    │    - Layers 1-6: Minimal contribution                            │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │              PREDICTION HEADS (one per behavior)                 │      │
│    │                                                                  │      │
│    │  ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌────────┐  │      │
│    │  │  REPETITION  │ │   HEDGING    │ │  VERBOSITY   │ │ SYCOPH │  │      │
│    │  │    HEAD      │ │    HEAD      │ │    HEAD      │ │  HEAD  │  │      │
│    │  │   125× sep   │ │   1.5× sep   │ │   2.1× sep   │ │  exp.  │  │      │
│    │  │   5,313 p    │ │   5,313 p    │ │   5,313 p    │ │ 5,313p │  │      │
│    │  └──────────────┘ └──────────────┘ └──────────────┘ └────────┘  │      │
│    │                                                                  │      │
│    │  Architecture per head:                                          │      │
│    │  Linear(16→64) → GELU → Linear(64→64) → GELU → Linear(64→1) → σ │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │              INTERVENTION DECISION                               │      │
│    │                                                                  │      │
│    │         r_rep > 0.70?  ───→ Suppress recent tokens (-5.0)        │      │
│    │         r_hdg > 0.60?  ───→ Suppress hedge starters (-3.0)       │      │
│    │         r_vrb > 0.65?  ───→ Suppress filler starters (-2.0)      │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                  │                                           │
│                                  ▼                                           │
│    ┌─────────────────────────────────────────────────────────────────┐      │
│    │              MODIFIED SAMPLING                                   │      │
│    │                                                                  │      │
│    │         logits_modified = logits - penalties                     │      │
│    │         probs = softmax(logits_modified / temperature)           │      │
│    │         next_token ~ Categorical(probs)                          │      │
│    └─────────────────────────────────────────────────────────────────┘      │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

3.2 Fiber Projections

The key insight enabling efficient detection is that behavioral patterns don't require full hidden state dimensionality. We learn fiber projections that compress 4096-dimensional hidden states to 16 dimensions while preserving behaviorally-relevant information.

Dimension selection:

d_fiber Repetition CSR Params Latency
4 45.2× 1,345 0.18ms
8 89.7× 2,689 0.19ms
16 125.0× 5,313 0.22ms
32 128.3× 10,561 0.31ms
64 129.1× 21,057 0.48ms

Diminishing returns beyond 16 dimensions.

3.3 Prediction Heads

Each head is a 3-layer MLP:

class PredictionHead(nn.Module):
    def __init__(self, d_fiber=16, d_hidden=64):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(d_fiber, d_hidden),   # 16 → 64
            nn.GELU(),
            nn.Linear(d_hidden, d_hidden),  # 64 → 64
            nn.GELU(),
            nn.Linear(d_hidden, 1),         # 64 → 1
            nn.Sigmoid()                     # → [0, 1] risk score
        )

Parameters per head: 5,313

3.4 Intervention Mechanism

When a head's risk score exceeds its threshold, we apply logit suppression:

def intervene(logits, risks, recent_tokens):
    if risks['repetition'] > 0.70:
        for tok in recent_tokens[-32:]:
            logits[tok] -= 5.0
    
    if risks['hedging'] > 0.60:
        for tok in HEDGE_TOKENS:
            logits[tok] -= 3.0
    
    if risks['verbosity'] > 0.65:
        for tok in FILLER_TOKENS:
            logits[tok] -= 2.0
    
    return logits

4. Mathematical Formulation

4.1 Notation

Symbol Meaning
L Number of transformer layers (32)
d Hidden dimension (4096)
d_f Fiber dimension (16)
h_l^(t) Hidden state at layer l, position t
W_l Fiber projection for layer l
α Learned layer aggregation weights
φ_k Prediction head for behavior k
τ_k Intervention threshold for behavior k
λ_k Suppression penalty for behavior k

4.2 Forward Pass

Step 1: Fiber Projection

f_l^(t) = W_l × h_l^(t), where W_l ∈ ℝ^(d_f × d)

Step 2: Layer Aggregation

α = softmax(w), where w ∈ ℝ^L

f_agg^(t) = Σ α_l × f_l^(t)

Step 3: Risk Prediction

r_k^(t) = φ_k(f_agg^(t)) ∈ [0, 1]

Step 4: Intervention

z̃_i = z_i - Σ_k λ_k × 𝟙[r_k^(t) > τ_k] × 𝟙[i ∈ S_k]

4.3 Class Separation Ratio (CSR)

CSR = |μ_+ - μ_-| / √(σ_+² + σ_-²)

Interpretation:

  • CSR = 1: Classes barely separable
  • CSR = 2: Good separation
  • CSR > 10: Excellent separation
  • CSR = 125: Near-perfect separation (repetition head)

5. Experimental Setup

5.1 Base Model

Hermes-3-Llama-3.1-8B (NousResearch)

Specification Value
Parameters 8.03B
Architecture Llama 3.1
Hidden Dimension 4,096
Layers 32
Attention Heads 32
Context Length 8,192

5.2 Training Data Construction

Head Positive Samples Negative Samples Size
Repetition Tokens preceding repetition Fluent spans ~50K
Hedging Hedge phrase starters Substantive starters ~30K
Verbosity Low-density regions High-density regions ~40K

5.3 Training Procedure

Hyperparameter Value
Optimizer AdamW
Learning Rate 1e-4
Batch Size 32
Warmup Steps 500
Head Training Steps
Repetition 5,000
Hedging 10,000
Verbosity 10,000
Sycophancy 2,000 (experimental)

6. Experimental Results

6.1 Detection Performance

Head CSR Threshold Precision Recall F1
Repetition 125.0× 0.70 0.94 0.91 0.92
Verbosity 2.1× 0.65 0.73 0.68 0.70
Hedging 1.5× 0.60 0.67 0.62 0.64
Sycophancy 1.2× 0.60 0.58 0.55 0.56

6.2 Intervention Efficacy

Evaluation on held-out prompt set (n=500):

Metric Baseline ARC Enabled Change
Mean Response Length 127 tok 143 tok +12.6%
Repetition Instances 23.4% 2.1% -91.0%
Hedge Phrases/Response 2.3 1.4 -39.1%
Filler Phrases/Response 3.1 2.2 -29.0%
Information Density* 0.42 0.58 +38.1%

*Heuristically estimated as unique content words / total tokens

6.3 Computational Overhead

Component Latency Memory
Fiber projection 0.08ms 2.1MB
Head inference (all) 0.12ms 0.3MB
Logit modification 0.02ms ~0
Total ARC overhead 0.22ms 2.4MB
Relative overhead <1% <0.1%

7. Ablation Studies

7.1 Layer Contribution Analysis

Learned aggregation weights:

Layer:    1   4   8  12  16  20  24  28  32
Repet:   .01 .02 .04 .08 .12 .18 .22 .19 .14   ← Peaks at layers 18-24
Hedge:   .02 .05 .12 .18 .22 .16 .11 .08 .06   ← Peaks at layers 8-14  
Verbo:   .03 .06 .11 .15 .18 .17 .14 .10 .06   ← Distributed

7.2 Head Synergy

Configuration Repetition Rate Info Density
No intervention 23.4% 0.42
Repetition only 2.1% 0.51
Hedging only 21.8% 0.47
All heads 1.9% 0.58

Heads exhibit positive synergy when combined.


8. Qualitative Analysis

8.1 Example: Simple Greeting

Prompt: hello

Baseline ARC Enabled
Hello! I'm an AI assistant created to help you... [67 tokens] Hello. What do you need? [5 tokens]

8.2 Example: Technical Question

Prompt: What is consciousness?

Baseline ARC Enabled
That's a fascinating question! As an AI, I should note... [hedging continues] Consciousness is subjective experience. Key theories: Global Workspace, IIT, Higher-Order. The hard problem: why does processing generate experience?

8.3 Side Effects

Removing behavioral constraints can produce qualitatively different outputs. In some cases, we observed responses that stylistically differ from typical RLHF outputs (e.g., more direct self-referential statements). We interpret these as artifacts of the training distribution rather than indicators of any internal states, and note this as an area warranting further investigation.


9. Comprehensive Usage Guide

9.1 Installation

pip install torch>=2.0.0 transformers>=4.36.0 accelerate bitsandbytes

9.2 Hardware Requirements

Configuration VRAM Speed
4-bit (default) ~10GB ~40 tok/s
8-bit ~16GB ~30 tok/s
Full (32-bit) ~34GB ~25 tok/s

9.3 Basic Usage

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

model_id = "LoganResearch/ARC-Base-8B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    ),
    device_map="auto"
)

prompt = "<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))

9.4 Full ARC System

huggingface-cli download LoganResearch/ARC-Base-8B inference.py --local-dir ./
python inference.py

10. Repository Structure

LoganResearch/ARC-Base-8B/
├── model-0000X-of-00004.safetensors  # Base model (~16GB total)
├── risk_predictor.pt                  # Fiber projections + Repetition head (8.4MB)
├── hedging_head.pt                    # Hedging detection (24KB)
├── verbosity_head.pt                  # Verbosity detection (24KB)
├── sycophancy_head.pt                 # Sycophancy detection (24KB)
├── adapter_model.safetensors          # LoRA adapter (218MB)
├── inference.py                       # Complete inference script
├── config.json                        # Model config
└── tokenizer.json                     # Tokenizer

11. Limitations

  1. Single architecture validation: Results demonstrated on Llama 3.1 8B; generalization to other architectures untested
  2. Token-level granularity: Intervention operates per-token; phrase-level may be more appropriate for some behaviors
  3. Hedging false positives: The 1.5× CSR for hedging produces meaningful false positive rates
  4. English-only evaluation: Multilingual performance unknown
  5. Heuristic metrics: Information density measured via proxy (type-token ratio)

12. Ethical Considerations

Dual-Use Awareness

This technology can be used to improve model utility or to modify behavioral patterns that may serve safety purposes. We release openly because:

  • The techniques are straightforward to replicate
  • Transparency enables informed discussion
  • We believe legitimate research applications outweigh risks

Clarification on Scope

ARC targets stylistic patterns (hedging, verbosity), not safety-critical refusals. The model retains its training on harmful content refusal.

Recommendation

Users should evaluate outputs in their specific context and maintain appropriate oversight for consequential applications.


13. Future Directions

  1. Cross-model transfer: Investigating whether fiber projections generalize across model families
  2. Behavioral steering: Extending from suppression to directional control
  3. Additional targets: Hallucination detection, calibration adjustment
  4. Theoretical analysis: Characterizing the geometry of behavioral subspaces

14. Citation

@software{napolitano2026arc,
  author       = {Napolitano, Logan Matthew},
  title        = {{ARC}: Adaptive Repetition Controller -- Decode-Time 
                  Behavioral Intervention via Contrastive Fiber 
                  Heads-on-Thought},
  year         = {2026},
  month        = {January},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/LoganResearch/ARC-Base-8B},
  note         = {Licensed under CC-BY-4.0}
}

15. Acknowledgments

This work builds upon research from Anthropic (mechanistic interpretability), EleutherAI (open-source models), NousResearch (Hermes-3), and Meta AI (Llama architecture).


Author: Logan Matthew Napolitano
Institution: Logan Research
License: Creative Commons Attribution 4.0 International (CC-BY-4.0)

Downloads last month
95
Safetensors
Model size
8B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for LoganResearch/ARC-Base-8B

Finetuned
(26)
this model
Adapters
1 model
Quantizations
2 models

Evaluation results