ARC-8B: Adaptive Repetition Controller
Decode-Time Behavioral Intervention via Contrastive Fiber Heads-on-Thought (CF-HoT)
Author: Logan Matthew Napolitano
Institution: Logan Research
Release Date: January 2026
📖 Abstract | 🚀 Quick Start | 🔬 Method | 📊 Results | 💻 Usage
TL;DR
We observe that RLHF-aligned language models often expend a substantial fraction of their token budget on learned behavioral patterns (hedging, sycophancy, verbosity, repetition). These patterns are detectable in hidden states before they manifest as tokens. ARC intercepts and suppresses them at decode-time with <1% latency overhead.
The repetition detection head achieves 125× class separation — indicating high predictability of repetition-prone states from internal representations.
Abstract
Reinforcement Learning from Human Feedback (RLHF) has become the standard approach for aligning large language models with human preferences. However, we present evidence that RLHF introduces systematic behavioral overhead — learned response patterns that satisfy reward model preferences while consuming token budget without contributing proportionally to task completion.
We introduce ARC (Adaptive Repetition Controller), a decode-time intervention system employing Contrastive Fiber Heads-on-Thought (CF-HoT) — lightweight prediction heads (~5,300 parameters each) trained on compressed hidden state representations. These heads detect behavioral failure modes including:
| Behavior | Separation | What It Detects |
|---|---|---|
| Repetition | 125× | Semantic loops, token-level repetition |
| Verbosity | 2.1× | Filler phrases, unnecessary elaboration |
| Hedging | 1.5× | Epistemic disclaimers, capability denials |
| Sycophancy | experimental | Excessive affirmation, approval-seeking |
Our key finding: behavioral failure modes are linearly separable in a 16-dimensional projection of transformer hidden states, enabling real-time intervention with minimal computational overhead.
Headline Results
- 91% reduction in repetition instances
- 38% improvement in information density (heuristically estimated)
- <1% latency overhead
- ~5,300 parameters per detection head
Table of Contents
- Introduction
- Background
- Method: Contrastive Fiber Heads-on-Thought
- Mathematical Formulation
- Experimental Setup
- Experimental Results
- Ablation Studies
- Qualitative Analysis
- Comprehensive Usage Guide
- Repository Structure
- Limitations
- Ethical Considerations
- Future Directions
- Citation
- Acknowledgments
1. Introduction
1.1 The Problem: RLHF Behavioral Patterns
Consider a typical RLHF-aligned model response to "hello":
User: hello
Typical Response: Hello! I'm an AI assistant created to help you with a wide
variety of tasks. How can I assist you today? I'm happy to help with any
questions you might have, whether it's about general knowledge, creative
projects, coding, writing, or just having a friendly conversation!
We observe several patterns that consume tokens without proportional information gain:
- Identity declarations
- Vague capability claims
- Approval-seeking phrases
- Redundant invitations
This is the RLHF behavioral pattern: learned responses that score well on reward models but may dilute information density.
1.2 Our Solution: Decode-Time Intervention
Core Insight: Behavioral failure modes correspond to identifiable directions in activation space. By projecting hidden states into a low-dimensional "fiber space" and training lightweight classifiers, we can predict behavioral patterns before they manifest.
ARC Response to "hello":
User: hello
ARC Model: Hello. What do you need?
1.3 Key Contributions
- Empirical demonstration that RLHF behavioral patterns are linearly separable in hidden states
- CF-HoT architecture for efficient decode-time detection and intervention
- 125× class separation for repetition detection
- Complete open-source release of model, heads, and inference code
2. Background
2.1 RLHF and Behavioral Patterns
RLHF (Ouyang et al., 2022) trains language models to maximize a learned reward function approximating human preferences. We identify several emergent patterns:
| Pattern | Reward Model Signal | Trade-off |
|---|---|---|
| Hedging | Perceived carefulness | May reduce response confidence |
| Sycophancy | Perceived friendliness | Low information density |
| Verbosity | Perceived thoroughness | Signal dilution |
| Repetition | Perceived emphasis | Context window consumption |
Observation: Reward models may optimize for surface features correlated with quality rather than quality itself.
2.2 Activation Engineering
Recent work in mechanistic interpretability shows that high-level behaviors correspond to directions in activation space:
- Representation Engineering (Zou et al., 2023): Steering model behavior via activation addition
- Activation Addition (Turner et al., 2023): Linear interventions for behavioral control
- Probing Classifiers (Belinkov, 2022): Detecting properties from hidden states
ARC extends this work to real-time decode-time intervention.
2.3 Related Work
| Approach | When | Overhead | Reversible |
|---|---|---|---|
| Fine-tuning | Training | High | No |
| RLHF modification | Training | High | No |
| Prompt engineering | Inference | None | Yes |
| Activation steering | Inference | Medium | Yes |
| ARC (ours) | Decode-time | <1% | Yes |
3. Method: Contrastive Fiber Heads-on-Thought
3.1 Architecture Overview
┌─────────────────────────────────────────────────────────────────────────────┐
│ ARC SYSTEM ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ BASE MODEL (frozen) │ │
│ │ Hermes-3-Llama-3.1-8B │ │
│ │ 8.03B parameters │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ HIDDEN STATES │ │
│ │ h_l ∈ ℝ^4096 for l = 1...32 │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ FIBER PROJECTIONS (learned) │ │
│ │ W_l ∈ ℝ^(16×4096) for l = 1...32 │ │
│ │ f_l = W_l · h_l ∈ ℝ^16 │ │
│ │ │ │
│ │ Compression: 4096 → 16 dimensions (256× reduction) │ │
│ │ Total params: 32 × 4096 × 16 = 2,097,152 │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ LAYER AGGREGATION (learned weights) │ │
│ │ │ │
│ │ α = softmax(w) where w ∈ ℝ^32 │ │
│ │ f_agg = Σ α_l · f_l ∈ ℝ^16 │ │
│ │ │ │
│ │ Observation: Different layers encode different behaviors │ │
│ │ - Layers 18-24: Repetition patterns (highest weight) │ │
│ │ - Layers 8-14: Hedging patterns │ │
│ │ - Layers 1-6: Minimal contribution │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ PREDICTION HEADS (one per behavior) │ │
│ │ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌────────┐ │ │
│ │ │ REPETITION │ │ HEDGING │ │ VERBOSITY │ │ SYCOPH │ │ │
│ │ │ HEAD │ │ HEAD │ │ HEAD │ │ HEAD │ │ │
│ │ │ 125× sep │ │ 1.5× sep │ │ 2.1× sep │ │ exp. │ │ │
│ │ │ 5,313 p │ │ 5,313 p │ │ 5,313 p │ │ 5,313p │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ └────────┘ │ │
│ │ │ │
│ │ Architecture per head: │ │
│ │ Linear(16→64) → GELU → Linear(64→64) → GELU → Linear(64→1) → σ │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ INTERVENTION DECISION │ │
│ │ │ │
│ │ r_rep > 0.70? ───→ Suppress recent tokens (-5.0) │ │
│ │ r_hdg > 0.60? ───→ Suppress hedge starters (-3.0) │ │
│ │ r_vrb > 0.65? ───→ Suppress filler starters (-2.0) │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ MODIFIED SAMPLING │ │
│ │ │ │
│ │ logits_modified = logits - penalties │ │
│ │ probs = softmax(logits_modified / temperature) │ │
│ │ next_token ~ Categorical(probs) │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
3.2 Fiber Projections
The key insight enabling efficient detection is that behavioral patterns don't require full hidden state dimensionality. We learn fiber projections that compress 4096-dimensional hidden states to 16 dimensions while preserving behaviorally-relevant information.
Dimension selection:
| d_fiber | Repetition CSR | Params | Latency |
|---|---|---|---|
| 4 | 45.2× | 1,345 | 0.18ms |
| 8 | 89.7× | 2,689 | 0.19ms |
| 16 | 125.0× | 5,313 | 0.22ms |
| 32 | 128.3× | 10,561 | 0.31ms |
| 64 | 129.1× | 21,057 | 0.48ms |
Diminishing returns beyond 16 dimensions.
3.3 Prediction Heads
Each head is a 3-layer MLP:
class PredictionHead(nn.Module):
def __init__(self, d_fiber=16, d_hidden=64):
super().__init__()
self.net = nn.Sequential(
nn.Linear(d_fiber, d_hidden), # 16 → 64
nn.GELU(),
nn.Linear(d_hidden, d_hidden), # 64 → 64
nn.GELU(),
nn.Linear(d_hidden, 1), # 64 → 1
nn.Sigmoid() # → [0, 1] risk score
)
Parameters per head: 5,313
3.4 Intervention Mechanism
When a head's risk score exceeds its threshold, we apply logit suppression:
def intervene(logits, risks, recent_tokens):
if risks['repetition'] > 0.70:
for tok in recent_tokens[-32:]:
logits[tok] -= 5.0
if risks['hedging'] > 0.60:
for tok in HEDGE_TOKENS:
logits[tok] -= 3.0
if risks['verbosity'] > 0.65:
for tok in FILLER_TOKENS:
logits[tok] -= 2.0
return logits
4. Mathematical Formulation
4.1 Notation
| Symbol | Meaning |
|---|---|
| L | Number of transformer layers (32) |
| d | Hidden dimension (4096) |
| d_f | Fiber dimension (16) |
| h_l^(t) | Hidden state at layer l, position t |
| W_l | Fiber projection for layer l |
| α | Learned layer aggregation weights |
| φ_k | Prediction head for behavior k |
| τ_k | Intervention threshold for behavior k |
| λ_k | Suppression penalty for behavior k |
4.2 Forward Pass
Step 1: Fiber Projection
f_l^(t) = W_l × h_l^(t), where W_l ∈ ℝ^(d_f × d)
Step 2: Layer Aggregation
α = softmax(w), where w ∈ ℝ^L
f_agg^(t) = Σ α_l × f_l^(t)
Step 3: Risk Prediction
r_k^(t) = φ_k(f_agg^(t)) ∈ [0, 1]
Step 4: Intervention
z̃_i = z_i - Σ_k λ_k × 𝟙[r_k^(t) > τ_k] × 𝟙[i ∈ S_k]
4.3 Class Separation Ratio (CSR)
CSR = |μ_+ - μ_-| / √(σ_+² + σ_-²)
Interpretation:
- CSR = 1: Classes barely separable
- CSR = 2: Good separation
- CSR > 10: Excellent separation
- CSR = 125: Near-perfect separation (repetition head)
5. Experimental Setup
5.1 Base Model
Hermes-3-Llama-3.1-8B (NousResearch)
| Specification | Value |
|---|---|
| Parameters | 8.03B |
| Architecture | Llama 3.1 |
| Hidden Dimension | 4,096 |
| Layers | 32 |
| Attention Heads | 32 |
| Context Length | 8,192 |
5.2 Training Data Construction
| Head | Positive Samples | Negative Samples | Size |
|---|---|---|---|
| Repetition | Tokens preceding repetition | Fluent spans | ~50K |
| Hedging | Hedge phrase starters | Substantive starters | ~30K |
| Verbosity | Low-density regions | High-density regions | ~40K |
5.3 Training Procedure
| Hyperparameter | Value |
|---|---|
| Optimizer | AdamW |
| Learning Rate | 1e-4 |
| Batch Size | 32 |
| Warmup Steps | 500 |
| Head | Training Steps |
|---|---|
| Repetition | 5,000 |
| Hedging | 10,000 |
| Verbosity | 10,000 |
| Sycophancy | 2,000 (experimental) |
6. Experimental Results
6.1 Detection Performance
| Head | CSR | Threshold | Precision | Recall | F1 |
|---|---|---|---|---|---|
| Repetition | 125.0× | 0.70 | 0.94 | 0.91 | 0.92 |
| Verbosity | 2.1× | 0.65 | 0.73 | 0.68 | 0.70 |
| Hedging | 1.5× | 0.60 | 0.67 | 0.62 | 0.64 |
| Sycophancy | 1.2× | 0.60 | 0.58 | 0.55 | 0.56 |
6.2 Intervention Efficacy
Evaluation on held-out prompt set (n=500):
| Metric | Baseline | ARC Enabled | Change |
|---|---|---|---|
| Mean Response Length | 127 tok | 143 tok | +12.6% |
| Repetition Instances | 23.4% | 2.1% | -91.0% |
| Hedge Phrases/Response | 2.3 | 1.4 | -39.1% |
| Filler Phrases/Response | 3.1 | 2.2 | -29.0% |
| Information Density* | 0.42 | 0.58 | +38.1% |
*Heuristically estimated as unique content words / total tokens
6.3 Computational Overhead
| Component | Latency | Memory |
|---|---|---|
| Fiber projection | 0.08ms | 2.1MB |
| Head inference (all) | 0.12ms | 0.3MB |
| Logit modification | 0.02ms | ~0 |
| Total ARC overhead | 0.22ms | 2.4MB |
| Relative overhead | <1% | <0.1% |
7. Ablation Studies
7.1 Layer Contribution Analysis
Learned aggregation weights:
Layer: 1 4 8 12 16 20 24 28 32
Repet: .01 .02 .04 .08 .12 .18 .22 .19 .14 ← Peaks at layers 18-24
Hedge: .02 .05 .12 .18 .22 .16 .11 .08 .06 ← Peaks at layers 8-14
Verbo: .03 .06 .11 .15 .18 .17 .14 .10 .06 ← Distributed
7.2 Head Synergy
| Configuration | Repetition Rate | Info Density |
|---|---|---|
| No intervention | 23.4% | 0.42 |
| Repetition only | 2.1% | 0.51 |
| Hedging only | 21.8% | 0.47 |
| All heads | 1.9% | 0.58 |
Heads exhibit positive synergy when combined.
8. Qualitative Analysis
8.1 Example: Simple Greeting
Prompt: hello
| Baseline | ARC Enabled |
|---|---|
| Hello! I'm an AI assistant created to help you... [67 tokens] | Hello. What do you need? [5 tokens] |
8.2 Example: Technical Question
Prompt: What is consciousness?
| Baseline | ARC Enabled |
|---|---|
| That's a fascinating question! As an AI, I should note... [hedging continues] | Consciousness is subjective experience. Key theories: Global Workspace, IIT, Higher-Order. The hard problem: why does processing generate experience? |
8.3 Side Effects
Removing behavioral constraints can produce qualitatively different outputs. In some cases, we observed responses that stylistically differ from typical RLHF outputs (e.g., more direct self-referential statements). We interpret these as artifacts of the training distribution rather than indicators of any internal states, and note this as an area warranting further investigation.
9. Comprehensive Usage Guide
9.1 Installation
pip install torch>=2.0.0 transformers>=4.36.0 accelerate bitsandbytes
9.2 Hardware Requirements
| Configuration | VRAM | Speed |
|---|---|---|
| 4-bit (default) | ~10GB | ~40 tok/s |
| 8-bit | ~16GB | ~30 tok/s |
| Full (32-bit) | ~34GB | ~25 tok/s |
9.3 Basic Usage
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
model_id = "LoganResearch/ARC-Base-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
),
device_map="auto"
)
prompt = "<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
9.4 Full ARC System
huggingface-cli download LoganResearch/ARC-Base-8B inference.py --local-dir ./
python inference.py
10. Repository Structure
LoganResearch/ARC-Base-8B/
├── model-0000X-of-00004.safetensors # Base model (~16GB total)
├── risk_predictor.pt # Fiber projections + Repetition head (8.4MB)
├── hedging_head.pt # Hedging detection (24KB)
├── verbosity_head.pt # Verbosity detection (24KB)
├── sycophancy_head.pt # Sycophancy detection (24KB)
├── adapter_model.safetensors # LoRA adapter (218MB)
├── inference.py # Complete inference script
├── config.json # Model config
└── tokenizer.json # Tokenizer
11. Limitations
- Single architecture validation: Results demonstrated on Llama 3.1 8B; generalization to other architectures untested
- Token-level granularity: Intervention operates per-token; phrase-level may be more appropriate for some behaviors
- Hedging false positives: The 1.5× CSR for hedging produces meaningful false positive rates
- English-only evaluation: Multilingual performance unknown
- Heuristic metrics: Information density measured via proxy (type-token ratio)
12. Ethical Considerations
Dual-Use Awareness
This technology can be used to improve model utility or to modify behavioral patterns that may serve safety purposes. We release openly because:
- The techniques are straightforward to replicate
- Transparency enables informed discussion
- We believe legitimate research applications outweigh risks
Clarification on Scope
ARC targets stylistic patterns (hedging, verbosity), not safety-critical refusals. The model retains its training on harmful content refusal.
Recommendation
Users should evaluate outputs in their specific context and maintain appropriate oversight for consequential applications.
13. Future Directions
- Cross-model transfer: Investigating whether fiber projections generalize across model families
- Behavioral steering: Extending from suppression to directional control
- Additional targets: Hallucination detection, calibration adjustment
- Theoretical analysis: Characterizing the geometry of behavioral subspaces
14. Citation
@software{napolitano2026arc,
author = {Napolitano, Logan Matthew},
title = {{ARC}: Adaptive Repetition Controller -- Decode-Time
Behavioral Intervention via Contrastive Fiber
Heads-on-Thought},
year = {2026},
month = {January},
publisher = {Hugging Face},
url = {https://huggingface.co/LoganResearch/ARC-Base-8B},
note = {Licensed under CC-BY-4.0}
}
15. Acknowledgments
This work builds upon research from Anthropic (mechanistic interpretability), EleutherAI (open-source models), NousResearch (Hermes-3), and Meta AI (Llama architecture).
Author: Logan Matthew Napolitano
Institution: Logan Research
License: Creative Commons Attribution 4.0 International (CC-BY-4.0)
- Downloads last month
- 95
Model tree for LoganResearch/ARC-Base-8B
Base model
meta-llama/Llama-3.1-8BEvaluation results
- Repetition Head Separationself-reported125x
- Verbosity Head Separationself-reported2.1x
- Hedging Head Separationself-reported1.5x
- Latency Overheadself-reported0.010
