BioHackathon_Lipids-tapt_ulmfit-LR_5e-05
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0413
- Accuracy: 0.7657
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.1168 | 1.0 | 29 | 1.0696 | 0.7637 |
| 1.1267 | 2.0 | 58 | 1.0728 | 0.7618 |
| 1.1216 | 3.0 | 87 | 1.0138 | 0.7740 |
| 1.1144 | 4.0 | 116 | 1.0432 | 0.7676 |
| 1.1034 | 5.0 | 145 | 1.0598 | 0.7629 |
| 1.0808 | 6.0 | 174 | 1.0371 | 0.7715 |
| 1.0731 | 7.0 | 203 | 1.0582 | 0.7674 |
| 1.0745 | 8.0 | 232 | 1.0189 | 0.7685 |
| 1.086 | 9.0 | 261 | 1.0626 | 0.7630 |
| 1.0495 | 10.0 | 290 | 1.0152 | 0.7739 |
| 1.0604 | 11.0 | 319 | 1.0594 | 0.7627 |
| 1.0609 | 12.0 | 348 | 1.0114 | 0.7738 |
| 1.0446 | 13.0 | 377 | 1.0357 | 0.7673 |
| 1.0477 | 14.0 | 406 | 1.0101 | 0.7749 |
| 1.0164 | 15.0 | 435 | 1.0365 | 0.7687 |
| 1.0375 | 16.0 | 464 | 1.0249 | 0.7691 |
| 1.0229 | 17.0 | 493 | 1.0109 | 0.7724 |
| 1.0325 | 18.0 | 522 | 1.0390 | 0.7727 |
| 1.0029 | 19.0 | 551 | 1.0173 | 0.7720 |
| 1.0094 | 20.0 | 580 | 0.9962 | 0.7727 |
| 1.0047 | 21.0 | 609 | 1.0157 | 0.7687 |
| 1.0008 | 22.0 | 638 | 1.0162 | 0.7701 |
| 0.9801 | 23.0 | 667 | 1.0685 | 0.7645 |
| 0.9687 | 24.0 | 696 | 1.0477 | 0.7719 |
| 0.9864 | 25.0 | 725 | 1.0134 | 0.7722 |
| 0.983 | 26.0 | 754 | 1.0016 | 0.7719 |
| 0.971 | 27.0 | 783 | 1.0311 | 0.7670 |
| 0.9575 | 28.0 | 812 | 1.0171 | 0.7667 |
| 0.9556 | 29.0 | 841 | 1.0105 | 0.7734 |
| 0.9463 | 30.0 | 870 | 1.0300 | 0.7706 |
| 0.9483 | 31.0 | 899 | 1.0166 | 0.7667 |
| 0.9209 | 32.0 | 928 | 1.0287 | 0.7652 |
| 0.9239 | 33.0 | 957 | 1.0556 | 0.7651 |
| 0.9178 | 34.0 | 986 | 1.0388 | 0.7678 |
| 0.913 | 35.0 | 1015 | 1.0030 | 0.7709 |
| 0.897 | 36.0 | 1044 | 1.0188 | 0.7713 |
| 0.9113 | 37.0 | 1073 | 1.0326 | 0.7673 |
| 0.9096 | 38.0 | 1102 | 1.0181 | 0.7685 |
| 0.8987 | 39.0 | 1131 | 1.0742 | 0.7594 |
| 0.9019 | 40.0 | 1160 | 1.0270 | 0.7715 |
| 0.8975 | 41.0 | 1189 | 1.0298 | 0.7693 |
| 0.872 | 42.0 | 1218 | 1.0666 | 0.7607 |
| 0.8802 | 43.0 | 1247 | 1.0537 | 0.7634 |
| 0.8842 | 44.0 | 1276 | 1.0966 | 0.7543 |
| 0.8658 | 45.0 | 1305 | 1.0463 | 0.7688 |
| 0.8611 | 46.0 | 1334 | 1.0673 | 0.7682 |
| 0.8576 | 47.0 | 1363 | 1.0586 | 0.7664 |
| 0.8821 | 48.0 | 1392 | 1.0404 | 0.7639 |
| 0.8773 | 49.0 | 1421 | 1.0405 | 0.7642 |
| 0.8557 | 50.0 | 1450 | 1.0633 | 0.7666 |
| 0.8532 | 51.0 | 1479 | 1.0351 | 0.7693 |
| 0.8542 | 52.0 | 1508 | 1.0515 | 0.7633 |
| 0.8595 | 53.0 | 1537 | 1.0418 | 0.7664 |
| 0.8479 | 54.0 | 1566 | 1.0627 | 0.7634 |
| 0.8381 | 55.0 | 1595 | 1.0479 | 0.7653 |
| 0.8536 | 56.0 | 1624 | 1.0607 | 0.7653 |
| 0.8346 | 57.0 | 1653 | 1.0422 | 0.7696 |
| 0.8343 | 58.0 | 1682 | 1.0693 | 0.7621 |
| 0.8371 | 59.0 | 1711 | 1.0413 | 0.7685 |
| 0.8269 | 60.0 | 1740 | 1.0188 | 0.7712 |
| 0.8323 | 61.0 | 1769 | 1.0435 | 0.7637 |
| 0.8253 | 62.0 | 1798 | 1.0954 | 0.7613 |
| 0.8276 | 63.0 | 1827 | 1.0548 | 0.7607 |
| 0.8382 | 64.0 | 1856 | 1.0348 | 0.7705 |
| 0.8254 | 65.0 | 1885 | 1.0556 | 0.7691 |
| 0.8223 | 66.0 | 1914 | 1.0524 | 0.7624 |
| 0.8255 | 67.0 | 1943 | 1.0091 | 0.7719 |
| 0.8198 | 68.0 | 1972 | 1.0421 | 0.7676 |
| 0.8226 | 69.0 | 2001 | 1.0730 | 0.7594 |
| 0.8167 | 70.0 | 2030 | 1.0402 | 0.7645 |
| 0.8225 | 71.0 | 2059 | 1.0688 | 0.7610 |
| 0.8289 | 72.0 | 2088 | 1.0325 | 0.7674 |
| 0.8378 | 73.0 | 2117 | 1.0354 | 0.7682 |
| 0.8096 | 74.0 | 2146 | 1.0741 | 0.7669 |
| 0.8064 | 75.0 | 2175 | 1.0623 | 0.7674 |
| 0.8171 | 76.0 | 2204 | 1.0758 | 0.7679 |
| 0.8212 | 77.0 | 2233 | 1.0459 | 0.7739 |
| 0.804 | 78.0 | 2262 | 1.0472 | 0.7686 |
| 0.806 | 79.0 | 2291 | 1.0378 | 0.7699 |
| 0.8371 | 80.0 | 2320 | 1.0089 | 0.7723 |
| 0.8114 | 81.0 | 2349 | 1.1131 | 0.7638 |
| 0.8229 | 82.0 | 2378 | 1.0552 | 0.7644 |
| 0.8053 | 83.0 | 2407 | 1.0513 | 0.7613 |
| 0.8025 | 84.0 | 2436 | 1.0464 | 0.7631 |
| 0.8148 | 85.0 | 2465 | 1.0840 | 0.7611 |
| 0.8136 | 86.0 | 2494 | 1.0513 | 0.7649 |
| 0.8124 | 87.0 | 2523 | 1.0612 | 0.7620 |
| 0.803 | 88.0 | 2552 | 1.0832 | 0.7598 |
| 0.791 | 89.0 | 2581 | 1.0610 | 0.7654 |
| 0.7982 | 90.0 | 2610 | 1.0700 | 0.7639 |
| 0.8032 | 91.0 | 2639 | 1.0676 | 0.7669 |
| 0.8059 | 92.0 | 2668 | 1.0803 | 0.7589 |
| 0.7865 | 93.0 | 2697 | 1.0448 | 0.7699 |
| 0.8103 | 94.0 | 2726 | 1.0461 | 0.7689 |
| 0.7937 | 95.0 | 2755 | 1.0669 | 0.7638 |
| 0.8027 | 96.0 | 2784 | 1.0995 | 0.7573 |
| 0.8096 | 96.5614 | 2800 | 1.0413 | 0.7657 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 3