BioHackathon_Lipids-tapt_ulmfit-LR_5e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0413
  • Accuracy: 0.7657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1168 1.0 29 1.0696 0.7637
1.1267 2.0 58 1.0728 0.7618
1.1216 3.0 87 1.0138 0.7740
1.1144 4.0 116 1.0432 0.7676
1.1034 5.0 145 1.0598 0.7629
1.0808 6.0 174 1.0371 0.7715
1.0731 7.0 203 1.0582 0.7674
1.0745 8.0 232 1.0189 0.7685
1.086 9.0 261 1.0626 0.7630
1.0495 10.0 290 1.0152 0.7739
1.0604 11.0 319 1.0594 0.7627
1.0609 12.0 348 1.0114 0.7738
1.0446 13.0 377 1.0357 0.7673
1.0477 14.0 406 1.0101 0.7749
1.0164 15.0 435 1.0365 0.7687
1.0375 16.0 464 1.0249 0.7691
1.0229 17.0 493 1.0109 0.7724
1.0325 18.0 522 1.0390 0.7727
1.0029 19.0 551 1.0173 0.7720
1.0094 20.0 580 0.9962 0.7727
1.0047 21.0 609 1.0157 0.7687
1.0008 22.0 638 1.0162 0.7701
0.9801 23.0 667 1.0685 0.7645
0.9687 24.0 696 1.0477 0.7719
0.9864 25.0 725 1.0134 0.7722
0.983 26.0 754 1.0016 0.7719
0.971 27.0 783 1.0311 0.7670
0.9575 28.0 812 1.0171 0.7667
0.9556 29.0 841 1.0105 0.7734
0.9463 30.0 870 1.0300 0.7706
0.9483 31.0 899 1.0166 0.7667
0.9209 32.0 928 1.0287 0.7652
0.9239 33.0 957 1.0556 0.7651
0.9178 34.0 986 1.0388 0.7678
0.913 35.0 1015 1.0030 0.7709
0.897 36.0 1044 1.0188 0.7713
0.9113 37.0 1073 1.0326 0.7673
0.9096 38.0 1102 1.0181 0.7685
0.8987 39.0 1131 1.0742 0.7594
0.9019 40.0 1160 1.0270 0.7715
0.8975 41.0 1189 1.0298 0.7693
0.872 42.0 1218 1.0666 0.7607
0.8802 43.0 1247 1.0537 0.7634
0.8842 44.0 1276 1.0966 0.7543
0.8658 45.0 1305 1.0463 0.7688
0.8611 46.0 1334 1.0673 0.7682
0.8576 47.0 1363 1.0586 0.7664
0.8821 48.0 1392 1.0404 0.7639
0.8773 49.0 1421 1.0405 0.7642
0.8557 50.0 1450 1.0633 0.7666
0.8532 51.0 1479 1.0351 0.7693
0.8542 52.0 1508 1.0515 0.7633
0.8595 53.0 1537 1.0418 0.7664
0.8479 54.0 1566 1.0627 0.7634
0.8381 55.0 1595 1.0479 0.7653
0.8536 56.0 1624 1.0607 0.7653
0.8346 57.0 1653 1.0422 0.7696
0.8343 58.0 1682 1.0693 0.7621
0.8371 59.0 1711 1.0413 0.7685
0.8269 60.0 1740 1.0188 0.7712
0.8323 61.0 1769 1.0435 0.7637
0.8253 62.0 1798 1.0954 0.7613
0.8276 63.0 1827 1.0548 0.7607
0.8382 64.0 1856 1.0348 0.7705
0.8254 65.0 1885 1.0556 0.7691
0.8223 66.0 1914 1.0524 0.7624
0.8255 67.0 1943 1.0091 0.7719
0.8198 68.0 1972 1.0421 0.7676
0.8226 69.0 2001 1.0730 0.7594
0.8167 70.0 2030 1.0402 0.7645
0.8225 71.0 2059 1.0688 0.7610
0.8289 72.0 2088 1.0325 0.7674
0.8378 73.0 2117 1.0354 0.7682
0.8096 74.0 2146 1.0741 0.7669
0.8064 75.0 2175 1.0623 0.7674
0.8171 76.0 2204 1.0758 0.7679
0.8212 77.0 2233 1.0459 0.7739
0.804 78.0 2262 1.0472 0.7686
0.806 79.0 2291 1.0378 0.7699
0.8371 80.0 2320 1.0089 0.7723
0.8114 81.0 2349 1.1131 0.7638
0.8229 82.0 2378 1.0552 0.7644
0.8053 83.0 2407 1.0513 0.7613
0.8025 84.0 2436 1.0464 0.7631
0.8148 85.0 2465 1.0840 0.7611
0.8136 86.0 2494 1.0513 0.7649
0.8124 87.0 2523 1.0612 0.7620
0.803 88.0 2552 1.0832 0.7598
0.791 89.0 2581 1.0610 0.7654
0.7982 90.0 2610 1.0700 0.7639
0.8032 91.0 2639 1.0676 0.7669
0.8059 92.0 2668 1.0803 0.7589
0.7865 93.0 2697 1.0448 0.7699
0.8103 94.0 2726 1.0461 0.7689
0.7937 95.0 2755 1.0669 0.7638
0.8027 96.0 2784 1.0995 0.7573
0.8096 96.5614 2800 1.0413 0.7657

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/BioHackathon_Lipids-tapt_ulmfit-LR_5e-05

Evaluation results