MiniMax-M2.1-bf16 / minimax_to_bf16.py
ehartford's picture
Create minimax_to_bf16.py
478ce39 verified
import os
import json
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm
import torch
from safetensors.torch import load_file, save_file
def weight_dequant_fp8(weight_fp8, scale_inv):
"""
Dequantize FP8 weights to BF16 using scale_inv.
Args:
weight_fp8: FP8 tensor
scale_inv: Inverse scale tensor (F32)
Returns:
BF16 tensor
"""
# Convert FP8 to float32 first
weight_f32 = weight_fp8.to(torch.float32)
# Apply inverse scaling
# scale_inv shape is typically [out_features_blocks, in_features_blocks]
# We need to broadcast it properly to match weight dimensions
if scale_inv.dim() == 2:
# Expand scale_inv to match weight dimensions
out_blocks, in_blocks = scale_inv.shape
weight_blocks_out = weight_fp8.shape[0] // out_blocks
weight_blocks_in = weight_fp8.shape[1] // in_blocks
# Repeat scale_inv to match weight shape
scale_inv_expanded = scale_inv.repeat_interleave(weight_blocks_out, dim=0)
scale_inv_expanded = scale_inv_expanded.repeat_interleave(weight_blocks_in, dim=1)
weight_f32 = weight_f32 * scale_inv_expanded
else:
weight_f32 = weight_f32 * scale_inv
# Convert to BF16
return weight_f32.to(torch.bfloat16)
def main(fp8_path, bf16_path):
torch.set_default_dtype(torch.bfloat16)
os.makedirs(bf16_path, exist_ok=True)
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
with open(model_index_file, "r") as f:
model_index = json.load(f)
weight_map = model_index["weight_map"]
# Cache for loaded safetensor files
loaded_files = {}
fp8_weight_names = []
# Helper function to get tensor from the correct file
def get_tensor(tensor_name):
if tensor_name not in weight_map:
return None
file_name = weight_map[tensor_name]
if file_name not in loaded_files:
file_path = os.path.join(fp8_path, file_name)
loaded_files[file_name] = load_file(file_path, device="cuda")
return loaded_files[file_name][tensor_name]
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
safetensor_files = [f for f in safetensor_files if not f.endswith(".index.json")]
safetensor_files.sort()
print(f"Found {len(safetensor_files)} safetensor files to convert")
for safetensor_file in tqdm(safetensor_files, desc="Converting files"):
file_name = os.path.basename(safetensor_file)
current_state_dict = load_file(safetensor_file, device="cuda")
loaded_files[file_name] = current_state_dict
new_state_dict = {}
for weight_name, weight in current_state_dict.items():
# Skip scale_inv tensors
if weight_name.endswith("_scale_inv"):
continue
# Check if this is an FP8 weight (F8_E4M3 has element_size of 1)
if weight.dtype == torch.float8_e4m3fn or weight.element_size() == 1:
scale_inv_name = f"{weight_name}_scale_inv"
scale_inv = get_tensor(scale_inv_name)
if scale_inv is not None:
fp8_weight_names.append(weight_name)
new_state_dict[weight_name] = weight_dequant_fp8(weight, scale_inv)
else:
print(f"Warning: Missing scale_inv tensor for {weight_name}, keeping as-is")
new_state_dict[weight_name] = weight
else:
# Already BF16 or F32, keep as-is
new_state_dict[weight_name] = weight
# Save converted weights
new_safetensor_file = os.path.join(bf16_path, file_name)
save_file(new_state_dict, new_safetensor_file)
# Memory management: keep only the 2 most recently used files
if len(loaded_files) > 2:
oldest_file = next(iter(loaded_files))
del loaded_files[oldest_file]
torch.cuda.empty_cache()
# Update model index - remove all _scale_inv entries
print("Updating model index...")
new_weight_map = {}
for weight_name, file_name in weight_map.items():
if not weight_name.endswith("_scale_inv"):
new_weight_map[weight_name] = file_name
new_model_index = {
"metadata": model_index.get("metadata", {}),
"weight_map": new_weight_map
}
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
with open(new_model_index_file, "w") as f:
json.dump(new_model_index, f, indent=2)
print(f"Conversion complete! Converted {len(fp8_weight_names)} FP8 weights to BF16")
print(f"Output saved to: {bf16_path}")
if __name__ == "__main__":
parser = ArgumentParser(description="Convert MiniMax-M2 from FP8 to BF16")
parser.add_argument("--input-fp8-hf-path", type=str, required=True,
help="Path to the FP8 model directory")
parser.add_argument("--output-bf16-hf-path", type=str, required=True,
help="Path to save the BF16 model")
args = parser.parse_args()
main(args.input_fp8_hf_path, args.output_bf16_hf_path)