Extractor_Adaptor_Qwen3_0.6b
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the web_finetune_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0554
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 4.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.4239 | 0.1047 | 50 | 0.3683 |
| 0.1005 | 0.2095 | 100 | 0.1148 |
| 0.0853 | 0.3142 | 150 | 0.0908 |
| 0.0645 | 0.4190 | 200 | 0.0831 |
| 0.0767 | 0.5237 | 250 | 0.0755 |
| 0.0826 | 0.6284 | 300 | 0.0706 |
| 0.0882 | 0.7332 | 350 | 0.0669 |
| 0.0726 | 0.8379 | 400 | 0.0635 |
| 0.0711 | 0.9427 | 450 | 0.0620 |
| 0.0433 | 1.0461 | 500 | 0.0622 |
| 0.0488 | 1.1508 | 550 | 0.0594 |
| 0.0347 | 1.2556 | 600 | 0.0587 |
| 0.0475 | 1.3603 | 650 | 0.0591 |
| 0.0485 | 1.4650 | 700 | 0.0554 |
| 0.0421 | 1.5698 | 750 | 0.0541 |
| 0.0395 | 1.6745 | 800 | 0.0546 |
| 0.0483 | 1.7793 | 850 | 0.0520 |
| 0.0421 | 1.8840 | 900 | 0.0553 |
| 0.0735 | 1.9887 | 950 | 0.0510 |
| 0.0233 | 2.0922 | 1000 | 0.0550 |
| 0.027 | 2.1969 | 1050 | 0.0544 |
| 0.0213 | 2.3016 | 1100 | 0.0516 |
| 0.0284 | 2.4064 | 1150 | 0.0526 |
| 0.0175 | 2.5111 | 1200 | 0.0524 |
| 0.0218 | 2.6159 | 1250 | 0.0526 |
| 0.0253 | 2.7206 | 1300 | 0.0511 |
| 0.0227 | 2.8253 | 1350 | 0.0518 |
| 0.0304 | 2.9301 | 1400 | 0.0513 |
| 0.018 | 3.0335 | 1450 | 0.0516 |
| 0.0193 | 3.1383 | 1500 | 0.0543 |
| 0.0243 | 3.2430 | 1550 | 0.0560 |
| 0.0213 | 3.3477 | 1600 | 0.0553 |
| 0.0157 | 3.4525 | 1650 | 0.0553 |
| 0.0264 | 3.5572 | 1700 | 0.0551 |
| 0.0439 | 3.6620 | 1750 | 0.0549 |
| 0.0164 | 3.7667 | 1800 | 0.0550 |
| 0.0245 | 3.8714 | 1850 | 0.0550 |
| 0.0168 | 3.9762 | 1900 | 0.0550 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 238