Extractor_Adaptor_Qwen3_r64_v

This model is a fine-tuned version of Qwen/Qwen3-0.6B on the web_finetune_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3280

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.547 0.0631 30 0.4545
0.4338 0.1262 60 0.4127
0.4446 0.1893 90 0.3988
0.4112 0.2524 120 0.3882
0.3833 0.3155 150 0.3803
0.3548 0.3785 180 0.3678
0.4313 0.4416 210 0.3595
0.3584 0.5047 240 0.3498
0.3297 0.5678 270 0.3457
0.3065 0.6309 300 0.3393
0.3325 0.6940 330 0.3360
0.412 0.7571 360 0.3322
0.2727 0.8202 390 0.3292
0.2804 0.8833 420 0.3284
0.2954 0.9464 450 0.3280

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
135
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for abdo-Mansour/Extractor_Adaptor_Qwen3_r64_v

Finetuned
Qwen/Qwen3-0.6B
Adapter
(212)
this model

Evaluation results