Extractor_Adaptor_Qwen3_r64_v
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the web_finetune_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.3280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.547 | 0.0631 | 30 | 0.4545 |
| 0.4338 | 0.1262 | 60 | 0.4127 |
| 0.4446 | 0.1893 | 90 | 0.3988 |
| 0.4112 | 0.2524 | 120 | 0.3882 |
| 0.3833 | 0.3155 | 150 | 0.3803 |
| 0.3548 | 0.3785 | 180 | 0.3678 |
| 0.4313 | 0.4416 | 210 | 0.3595 |
| 0.3584 | 0.5047 | 240 | 0.3498 |
| 0.3297 | 0.5678 | 270 | 0.3457 |
| 0.3065 | 0.6309 | 300 | 0.3393 |
| 0.3325 | 0.6940 | 330 | 0.3360 |
| 0.412 | 0.7571 | 360 | 0.3322 |
| 0.2727 | 0.8202 | 390 | 0.3292 |
| 0.2804 | 0.8833 | 420 | 0.3284 |
| 0.2954 | 0.9464 | 450 | 0.3280 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 135