Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    UnicodeDecodeError
Message:      'utf-8' codec can't decode byte 0xa1 in position 1850: invalid start byte
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 544, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 383, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/csv/csv.py", line 196, in _generate_tables
                  csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/streaming.py", line 73, in wrapper
                  return function(*args, download_config=download_config, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 1250, in xpandas_read_csv
                  return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
                  return _read(filepath_or_buffer, kwds)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 620, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
                  self._engine = self._make_engine(f, self.engine)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
                  return mapping[engine](f, **self.options)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
                  self._reader = parsers.TextReader(src, **kwds)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pandas/_libs/parsers.pyx", line 574, in pandas._libs.parsers.TextReader.__cinit__
                File "pandas/_libs/parsers.pyx", line 663, in pandas._libs.parsers.TextReader._get_header
                File "pandas/_libs/parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "pandas/_libs/parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "pandas/_libs/parsers.pyx", line 2053, in pandas._libs.parsers.raise_parser_error
                File "<frozen codecs>", line 322, in decode
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa1 in position 1850: invalid start byte

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Text2CAD-Bench 🏭

Version License

Text2CAD-Bench is the first comprehensive benchmark for evaluating text-to-CAD generation across geometric complexity and application diversity.

πŸ“’ News

  • [2026.02] πŸŽ‰ v1.0 released with 30% prompts for preview
  • [Coming Soon] v1.1 will include additional evaluation scripts and expanded documentation

πŸ“– Overview

Text2CAD-Bench comprises 600 human-curated examples organized into four benchmark levels:

Level Description Examples Key Features
L1 Basic 200 Primitives, simple spatial relationships
L2 Intermediate 200 Boolean operations, chamfer, fillet, patterns
L3 Advanced 100 Sweep, loft, shell, complex surfaces
L4 Real-world 100 Multi-domain applications

Each example includes dual-style prompts:

  • Geometric (Geo): Appearance-based descriptions mimicking non-expert users
  • Sequence (Seq): Procedural descriptions aligned with expert-level CAD conventions

πŸ“ Dataset Structure

Text2CAD-Bench/
β”œβ”€β”€ prompts/                    # 30% sample prompts (preview)
β”‚   β”œβ”€β”€ L1/
β”‚   β”‚   β”œβ”€β”€ L1_001_geo
β”‚   β”‚   β”œβ”€β”€ L1_001_seq
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ L2/
β”‚   β”œβ”€β”€ L3/
β”‚   └── L4/
β”œβ”€β”€ evaluation/                 # Evaluation scripts
β”‚   β”œβ”€β”€ metrics.py
β”‚   β”œβ”€β”€ evaluate.py
β”‚   └── requirements.txt
β”œβ”€β”€ examples/                   # Example outputs
β”‚   └── visualizations/
└── README.md

⚠️ Note: Ground truth STEP files are not publicly released to prevent benchmark contamination. The 30% prompt samples are provided to demonstrate data distribution and format. For full benchmark access, please contact us.

πŸ† Leaderboard

πŸ“Š Interactive Leaderboard: See leaderboard for sortable results by different metrics.

Final results are weighted by sample count: L1 (200, 40%), L2 (200, 40%), L3 (100, 20%).

General-purpose LLMs (Sorted by CD ↓)

Rank Model CD ↓ IR ↓ IoU ↑
πŸ₯‡ GPT-5.2 63.97 30.6% 0.45
πŸ₯ˆ Claude-4.5-Sonnet 66.90 41.3% 0.43
πŸ₯‰ DeepSeek-V3.2 76.25 29.7% 0.37
4 MiniMax M2.11 83.16 42.7% 0.37
5 GLM-4.7 84.98 35.0% 0.34
6 Qwen3-max 99.21 43.2% 0.28

Domain-specific Models (Sorted by CD ↓)

Rank Model CD ↓ IR ↓ IoU ↑
πŸ₯‡ CADFusion 224.35 60.5% 0.03
πŸ₯ˆ Text2CAD 248.66 7.0% 0.05
πŸ₯‰ Text2CADQuery 250.27 51.0% 0.04

πŸš€ Quick Start

Installation

git clone https://github.com/xxx/Text2CAD-Bench.git
cd Text2CAD-Bench
pip install -r evaluation/requirements.txt

Evaluation

from evaluation import evaluate

# Load your model outputs
results = evaluate(
    predictions_dir="path/to/your/outputs",
    metrics=["CD", "IR", "IoU"]
)

print(results.summary())

Submit to Leaderboard

To submit your results to the leaderboard:

  1. Run evaluation on the full benchmark by upload your model.
  2. Generate results file using our evaluation script
  3. Submit via Google Form or email
python evaluation/generate_submission.py \
    --predictions_dir path/to/outputs \
    --output submission.json

πŸ“œ License

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

You are free to:

  • Share β€” copy and redistribute the material in any medium or format
  • Adapt β€” remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

  • Attribution β€” You must give appropriate credit, provide a link to the license, and indicate if changes were made.

πŸ“§ Contact

  • Email:
  • Issues: Please use GitHub Issues for bug reports and feature requests
  • Full benchmark access: Contact us with your affiliation and intended use

πŸ™ Acknowledgements

We thank all annotators and reviewers who contributed to the construction of Text2CAD-Bench.


Text2CAD-Bench: A Benchmark for LLM-based Text-to-Parametric CAD Generation

Downloads last month
12