The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
⏱️ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
A model that learns to actively search for relevant temporal clips through end-to-end reinforcement learning.
📰 News
🔥 [2025/11/13] Our Model Checkpoint is uploaded!
👁️ Overview
TimeSearch-R reformulates temporal search as interleaved text–video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL).
We introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning.
🚀 Quick Start
🏝️ Environmental Setup
Step 1: Prepare the running environment.
Prepare the environment with CUDA and PyTorch (CUDA 12.4 and PyTorch 2.6.0 in our experiments), and install the dependencies with pip.
pip install -r requirements.txt
Step 2: Run the clip server for video frame retrieval.
Download the pre-trained SigLIP model.
huggingface-cli download google/siglip-so400m-patch14-384 --local-dir /path/to/your/local/filedir
Modify the clip_as_service/server/clip_server/torch-flow.yml to use the downloaded local model path and run the SigLIP server.
cd clip_as_service/server && pip3 install .
export CUDA_VISIBLE_DEVICES=RR
export GRPC_VERBOSITY=debug
export HF_HUB_OFFLINE=1
export PYTHONPATH=$PYTHONPATH:.
python3 -m clip_server
📦️ Dataset & Model
We provide the preprocessed JSON files for Haystack-LVBench. The corresponding .mp4 video files can be downloaded from the original LongVideoBench dataset.
Download the pre-trained TimeSearch-R model.
huggingface-cli download --resume-download Time-Search/TimeSearch-R --local-dir /path/to/your/local/filedir
(Recommended) Prepare the frame cache and feature cache. To accelerate the inference and training speed, we recommend extracting the frames and features for the videos in advance.
python3 scripts/converts/prepare_frame_cache.py /path/to/your/local/data_root /path/to/your/local/haystack_lvbench_input.jsonl --num_workers 16 --target_fps 2
python3 scripts/converts/prepare_feature_cache.py /path/to/your/local/data_root /path/to/your/local/haystack_lvbench_input.jsonl --num_workers 16
📋️ Inference & Evaluation
Step 1: Run the TimeSearch-R inference.
# The IP address from the above step
export SIGLIP_URL=grpc://127.0.0.1:51000
torchrun \
--nproc_per_node=8 \
--master_port=24137 \
time_r1/inference.py \
--input_path /path/to/your/local/haystack_lvbench_input.jsonl \
--save_path /path/to/your/local/haystack_lvbench_output \
--data_root /path/to/your/local/data_root \
--model_base /path/to/your/local/checkpoint \
--prompt_template v4 \
--use_env True \
--use_vllm True \
--batch_size 1 \
--num_data_workers 2 \
--total_video_tokens 24000 \
--max_frames 768 \
--max_tokens 256
Step 2: Evaluate the temporal search and QA performance.
The temporal search evaluation script is modified from T*.
# Temporal search evaluation
python time_r1/eval/eval_temporal_search.py --search_result_path /path/to/your/local/haystack_lvbench_output.jsonl
# QA evaluation
python time_r1/eval/longvideobench_eval.py /path/to/your/local/haystack_lvbench_output.jsonl
🏗️ GRPO-CSV Training
Step 1: Prepare the reward model.
We use Qwen-2.5-72B-Instruct as our reward model for LLM-as-a-judge verification.
# download Qwen-2.5-72B-Instruct model
huggingface-cli download --resume-download https://huggingface.co/Qwen/Qwen2.5-72B-Instruct --local-dir /path/to/your/local/filedir
Start a VLLM server of Qwen-2.5-72B-Instruct for LLM-as-a-judge verification.
vllm serve /path/to/your/local/filedir \
--port 18901 \
--gpu-memory-utilization 0.8 \
--max-model-len 32768 \
--tensor-parallel-size 8 \
--served-model-name "judge" \
--trust-remote-code \
--disable-log-requests
Step 2: Train TimeSearch-R with GRPO-CSV.
We recommend using no less than 16 GPUs (2 nodes x 8 GPUs) for 7B training. For each node, we recommend using no less than 1024GB CPU RAM, as the long-form videos in training datasets can consume a large amount of memory.
We provide the training script for TimeSearch-R with GRPO-CSV in scripts/train.sh.
bash scripts/train.sh
🔖 Citation
If you find TimeSearch-R useful for your research and applications, please cite using this BibTeX:
@article{timesearch-r,
title={TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning},
author={Pan, Junwen and Zhang, Qizhe and Zhang, Rui and Lu, Ming and Wan, Xin and Zhang, Yuan and Liu, Chang and She, Qi},
journal={arXiv preprint arXiv:2511.05489},
year={2025}
}
🎟️ License
This project is released under the Apache 2.0 license.
🏅 Acknowledgements
We thank the authors of the following projects for their contributions:
- Downloads last month
- 5,254

