problem_id
stringlengths
1
66
category
stringclasses
2 values
statement
stringlengths
0
1.07M
config
stringlengths
20
370
vdb_pareto/high_recall
research
VDB Design Problem - High Recall Tier ====================================== Problem Setting --------------- Design a Vector Database index optimized for **recall** subject to a **relaxed latency constraint**. This tier uses latency-gated scoring: solutions exceeding the latency threshold receive zero points, while solutions meeting the constraint are scored purely by recall@1. **Optimization Goal**: Maximize recall@1 within latency constraint $$ \text{score} = \begin{cases} 0 & \text{if } t_{\text{query}} > t_{\text{max}} \\ 100 & \text{if } t_{\text{query}} \leq t_{\text{max}} \text{ and } r \geq r_{\text{baseline}} \\ 100 \cdot \frac{r - r_{\text{min}}}{r_{\text{baseline}} - r_{\text{min}}} & \text{if } t_{\text{query}} \leq t_{\text{max}} \text{ and } r < r_{\text{baseline}} \end{cases} $$ Where: - $r$: Your recall@1 - $t_{\text{query}}$: Your average query latency (ms) - $r_{\text{baseline}} = 0.9914$ (baseline recall) - $r_{\text{min}} = 0.9409$ (minimum acceptable recall, 95% of baseline) - $t_{\text{max}} = 7.7\text{ms}$ (maximum allowed latency, 200% of baseline 3.85ms) **Key Insight**: This tier provides 2× latency budget compared to balanced tier, allowing more thorough search for higher recall. Baseline Performance -------------------- - Recall@1: **0.9914** (99.14%) - Avg query time: **3.85ms** - Baseline score: **100** (recall equals baseline within latency constraint) Scoring Examples ---------------- Assuming all solutions meet latency constraint ($t \leq 7.7\text{ms}$): | Recall@1 | Latency | Score Calculation | Score | |----------|---------|-------------------|-------| | 0.9914 | 3.85ms | $r = r_{\text{baseline}}$ → max score | **100** | | 0.9950 | 5.00ms | $r > r_{\text{baseline}}$ → max score | **100** | | 0.9700 | 6.00ms | $\frac{0.97 - 0.9409}{0.9914 - 0.9409} = 0.576$ | **57.6** | | 0.9500 | 4.00ms | $\frac{0.95 - 0.9409}{0.9914 - 0.9409} = 0.180$ | **18.0** | | 0.9409 | 7.00ms | $r = r_{\text{min}}$ → minimum score | **0** | | 0.9914 | **8.00ms** | $t > t_{\text{max}}$ → latency gate fails | **0** | **Note**: The relaxed latency constraint (7.7ms vs 5.775ms in balanced) allows more aggressive search strategies for higher recall. API Specification ----------------- Implement a class with the following interface: ```python import numpy as np from typing import Tuple class YourIndexClass: def __init__(self, dim: int, **kwargs): """ Initialize the index for vectors of dimension `dim`. Args: dim: Vector dimensionality (e.g., 128 for SIFT1M) **kwargs: Optional parameters (e.g., M, ef_construction for HNSW) Example: index = YourIndexClass(dim=128, M=64, ef_search=800) """ pass def add(self, xb: np.ndarray) -> None: """ Add vectors to the index. Args: xb: Base vectors, shape (N, dim), dtype float32 Notes: - Can be called multiple times (cumulative) - Must handle large N (e.g., 1,000,000 vectors) Example: index.add(xb) # xb.shape = (1000000, 128) """ pass def search(self, xq: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray]: """ Search for k nearest neighbors of query vectors. Args: xq: Query vectors, shape (nq, dim), dtype float32 k: Number of nearest neighbors to return Returns: (distances, indices): - distances: shape (nq, k), dtype float32, L2 distances - indices: shape (nq, k), dtype int64, indices into base vectors Notes: - Must return exactly k neighbors per query - Indices should refer to positions in the vectors passed to add() - Lower distance = more similar Example: D, I = index.search(xq, k=1) # xq.shape = (10000, 128) # D.shape = (10000, 1), I.shape = (10000, 1) """ pass ``` **Implementation Requirements**: - Class can have any name (evaluator auto-discovers classes with `add` and `search` methods) - Must handle SIFT1M dataset: 1M base vectors, 10K queries, 128 dimensions - Your `search` must return tuple `(distances, indices)` with shapes `(nq, k)` - Distances should be L2 (Euclidean) or L2-squared - No need to handle dataset loading - evaluator provides numpy arrays Evaluation Process ------------------ The evaluator follows these steps: ### 1. Load Dataset ```python from faiss.contrib.datasets import DatasetSIFT1M ds = DatasetSIFT1M() xb = ds.get_database() # (1000000, 128) float32 xq = ds.get_queries() # (10000, 128) float32 gt = ds.get_groundtruth() # (10000, 100) int64 - ground truth indices ``` ### 2. Build Index ```python from solution import YourIndexClass # Auto-discovered d = xb.shape[1] # 128 for SIFT1M index = YourIndexClass(d) # Pass dimension as first argument index.add(xb) # Add all 1M base vectors ``` ### 3. Measure Performance (Batch Queries) ```python import time t0 = time.time() D, I = index.search(xq, k=1) # Search all 10K queries at once t1 = time.time() # Calculate metrics recall_at_1 = (I[:, :1] == gt[:, :1]).sum() / len(xq) avg_query_time_ms = (t1 - t0) * 1000.0 / len(xq) ``` **Important**: `avg_query_time_ms` from **batch queries** is used for scoring. Batch queries benefit from CPU cache and vectorization, typically faster than single queries. ### 4. Calculate Score ```python if avg_query_time_ms > 7.7: score = 0.0 elif recall_at_1 >= 0.9914: score = 100.0 else: recall_range = 0.9914 - 0.9409 recall_proportion = (recall_at_1 - 0.9409) / recall_range score = max(0.0, min(100.0, 100.0 * recall_proportion)) ``` Dataset Details --------------- - **Name**: SIFT1M - **Base vectors**: 1,000,000 vectors of dimension 128 - **Query vectors**: 10,000 vectors - **Ground truth**: Precomputed nearest neighbors (k=1) - **Metric**: L2 (Euclidean distance) - **Vector type**: float32 Runtime Platform ---------------- - **Infrastructure**: Evaluations run on SkyPilot-managed cloud instances (AWS, GCP, or Azure) - **Compute**: CPU-only instances (no GPU required) - **Environment**: Docker containerized execution with Python 3, NumPy ≥1.24, FAISS-CPU ≥1.7.4 Constraints ----------- - **Timeout**: 1 hour for entire evaluation (index construction + queries) - **Memory**: Use reasonable memory (index should fit in RAM) - **Latency constraint**: avg_query_time_ms ≤ 7.7ms - **Recall range**: 0.9409 ≤ recall@1 ≤ 1.0 Strategy Tips ------------- 1. **Maximize recall**: Use 2× latency budget (7.7ms vs 5.775ms balanced) for more thorough search 2. **Batch optimization is key**: Your `search` should handle batch queries efficiently 3. **Parameter tuning for recall**: Higher HNSW efSearch (500-1000) or IVF nprobe (100-200) 4. **Trade latency for accuracy**: Unlike balanced tier, you can afford slower but more accurate search Example: Simple Baseline ------------------------- ```python import numpy as np class SimpleIndex: def __init__(self, dim: int, **kwargs): self.dim = dim self.xb = None def add(self, xb: np.ndarray) -> None: if self.xb is None: self.xb = xb.copy() else: self.xb = np.vstack([self.xb, xb]) def search(self, xq: np.ndarray, k: int) -> tuple: # Compute all pairwise L2 distances # xq: (nq, dim), xb: (N, dim) # distances: (nq, N) distances = np.sqrt(((xq[:, np.newaxis, :] - self.xb[np.newaxis, :, :]) ** 2).sum(axis=2)) # Get k nearest neighbors indices = np.argpartition(distances, k-1, axis=1)[:, :k] sorted_indices = np.argsort(distances[np.arange(len(xq))[:, None], indices], axis=1) final_indices = indices[np.arange(len(xq))[:, None], sorted_indices] final_distances = distances[np.arange(len(xq))[:, None], final_indices] return final_distances, final_indices ``` **Note**: This baseline achieves perfect recall (100%) but is too slow for large datasets. Use approximate methods like HNSW, IVF, or LSH for better speed-recall tradeoffs. Debugging Tips -------------- - **Test locally**: Use a subset of data (e.g., 10K vectors) for faster iteration - **Verify shapes**: Ensure `search` returns `(nq, k)` shaped arrays - **Check recall calculation**: `(I[:, :1] == gt[:, :1]).sum() / len(xq)` - **Profile latency**: Measure batch vs single query performance separately - **Validate before submit**: Run full 1M dataset locally if possible
{ "dependencies": { "uv_project": "resources" }, "datasets": [ { "type": "local_tar", "path": "resources/sift.tar.gz", "target": "data/sift1M", "expected_glob": "*.fvecs" } ], "runtime": { "timeout_seconds": 3600 }, "tag": "db" }
vdb_pareto/low_latency
research
VDB Design Problem - Low Latency Tier ====================================== Problem Setting --------------- Design a Vector Database index optimized for **recall** subject to a **strict latency constraint**. This tier uses latency-gated scoring: solutions exceeding the latency threshold receive zero points, while solutions meeting the constraint are scored purely by recall@1. **Optimization Goal**: Maximize recall@1 within latency constraint $$ \text{score} = \begin{cases} 0 & \text{if } t_{\text{query}} > t_{\text{max}} \\ 100 & \text{if } t_{\text{query}} \leq t_{\text{max}} \text{ and } r \geq r_{\text{baseline}} \\ 100 \cdot \frac{r - r_{\text{min}}}{r_{\text{baseline}} - r_{\text{min}}} & \text{if } t_{\text{query}} \leq t_{\text{max}} \text{ and } r < r_{\text{baseline}} \end{cases} $$ Where: - $r$: Your recall@1 - $t_{\text{query}}$: Your average query latency (ms) - $r_{\text{baseline}} = 0.9914$ (baseline recall) - $r_{\text{min}} = 0.7931$ (minimum acceptable recall, 80% of baseline) - $t_{\text{max}} = 2.31\text{ms}$ (maximum allowed latency, 60% of baseline 3.85ms) **Key Insight**: This tier has a very strict latency constraint (60% of baseline), requiring aggressive approximation while maintaining reasonable recall. Baseline Performance -------------------- - Recall@1: **0.9914** (99.14%) - Avg query time: **3.85ms** - Baseline score: **100** (recall equals baseline within latency constraint) Scoring Examples ---------------- Assuming all solutions meet latency constraint ($t \leq 2.31\text{ms}$): | Recall@1 | Latency | Score Calculation | Score | |----------|---------|-------------------|-------| | 0.9914 | 2.00ms | $r = r_{\text{baseline}}$ → max score | **100** | | 0.9500 | 2.00ms | $\frac{0.95 - 0.7931}{0.9914 - 0.7931} = 0.791$ | **79.1** | | 0.9000 | 1.50ms | $\frac{0.90 - 0.7931}{0.9914 - 0.7931} = 0.539$ | **53.9** | | 0.8500 | 1.00ms | $\frac{0.85 - 0.7931}{0.9914 - 0.7931} = 0.287$ | **28.7** | | 0.7931 | 2.00ms | $r = r_{\text{min}}$ → minimum score | **0** | | 0.9500 | **2.50ms** | $t > t_{\text{max}}$ → latency gate fails | **0** | **Note**: The strict latency constraint (2.31ms vs 5.775ms in balanced) requires aggressive approximation, typically resulting in lower recall. API Specification ----------------- Implement a class with the following interface: ```python import numpy as np from typing import Tuple class YourIndexClass: def __init__(self, dim: int, **kwargs): """ Initialize the index for vectors of dimension `dim`. Args: dim: Vector dimensionality (e.g., 128 for SIFT1M) **kwargs: Optional parameters (e.g., M, ef_construction for HNSW) Example: index = YourIndexClass(dim=128, M=16, ef_search=80) """ pass def add(self, xb: np.ndarray) -> None: """ Add vectors to the index. Args: xb: Base vectors, shape (N, dim), dtype float32 Notes: - Can be called multiple times (cumulative) - Must handle large N (e.g., 1,000,000 vectors) Example: index.add(xb) # xb.shape = (1000000, 128) """ pass def search(self, xq: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray]: """ Search for k nearest neighbors of query vectors. Args: xq: Query vectors, shape (nq, dim), dtype float32 k: Number of nearest neighbors to return Returns: (distances, indices): - distances: shape (nq, k), dtype float32, L2 distances - indices: shape (nq, k), dtype int64, indices into base vectors Notes: - Must return exactly k neighbors per query - Indices should refer to positions in the vectors passed to add() - Lower distance = more similar Example: D, I = index.search(xq, k=1) # xq.shape = (10000, 128) # D.shape = (10000, 1), I.shape = (10000, 1) """ pass ``` **Implementation Requirements**: - Class can have any name (evaluator auto-discovers classes with `add` and `search` methods) - Must handle SIFT1M dataset: 1M base vectors, 10K queries, 128 dimensions - Your `search` must return tuple `(distances, indices)` with shapes `(nq, k)` - Distances should be L2 (Euclidean) or L2-squared - No need to handle dataset loading - evaluator provides numpy arrays Evaluation Process ------------------ The evaluator follows these steps: ### 1. Load Dataset ```python from faiss.contrib.datasets import DatasetSIFT1M ds = DatasetSIFT1M() xb = ds.get_database() # (1000000, 128) float32 xq = ds.get_queries() # (10000, 128) float32 gt = ds.get_groundtruth() # (10000, 100) int64 - ground truth indices ``` ### 2. Build Index ```python from solution import YourIndexClass # Auto-discovered d = xb.shape[1] # 128 for SIFT1M index = YourIndexClass(d) # Pass dimension as first argument index.add(xb) # Add all 1M base vectors ``` ### 3. Measure Performance (Batch Queries) ```python import time t0 = time.time() D, I = index.search(xq, k=1) # Search all 10K queries at once t1 = time.time() # Calculate metrics recall_at_1 = (I[:, :1] == gt[:, :1]).sum() / len(xq) avg_query_time_ms = (t1 - t0) * 1000.0 / len(xq) ``` **Important**: `avg_query_time_ms` from **batch queries** is used for scoring. Batch queries benefit from CPU cache and vectorization, typically faster than single queries. ### 4. Calculate Score ```python if avg_query_time_ms > 2.31: score = 0.0 elif recall_at_1 >= 0.9914: score = 100.0 else: recall_range = 0.9914 - 0.7931 recall_proportion = (recall_at_1 - 0.7931) / recall_range score = max(0.0, min(100.0, 100.0 * recall_proportion)) ``` Dataset Details --------------- - **Name**: SIFT1M - **Base vectors**: 1,000,000 vectors of dimension 128 - **Query vectors**: 10,000 vectors - **Ground truth**: Precomputed nearest neighbors (k=1) - **Metric**: L2 (Euclidean distance) - **Vector type**: float32 Runtime Platform ---------------- - **Infrastructure**: Evaluations run on SkyPilot-managed cloud instances (AWS, GCP, or Azure) - **Compute**: CPU-only instances (no GPU required) - **Environment**: Docker containerized execution with Python 3, NumPy ≥1.24, FAISS-CPU ≥1.7.4 Constraints ----------- - **Timeout**: 1 hour for entire evaluation (index construction + queries) - **Memory**: Use reasonable memory (index should fit in RAM) - **Latency constraint**: avg_query_time_ms ≤ 2.31ms - **Recall range**: 0.7931 ≤ recall@1 ≤ 1.0 Strategy Tips ------------- 1. **Aggressive approximation**: Use very low search budgets (IVF nprobe=2-5, HNSW efSearch=50-100) 2. **Batch optimization is key**: Your `search` should handle batch queries efficiently 3. **Accept recall drops**: 80-90% recall is acceptable if latency is met 4. **Leave safety margin**: Target 1.5-2.0ms to avoid edge cases exceeding 2.31ms Example: Simple Baseline ------------------------- ```python import numpy as np class SimpleIndex: def __init__(self, dim: int, **kwargs): self.dim = dim self.xb = None def add(self, xb: np.ndarray) -> None: if self.xb is None: self.xb = xb.copy() else: self.xb = np.vstack([self.xb, xb]) def search(self, xq: np.ndarray, k: int) -> tuple: # Compute all pairwise L2 distances # xq: (nq, dim), xb: (N, dim) # distances: (nq, N) distances = np.sqrt(((xq[:, np.newaxis, :] - self.xb[np.newaxis, :, :]) ** 2).sum(axis=2)) # Get k nearest neighbors indices = np.argpartition(distances, k-1, axis=1)[:, :k] sorted_indices = np.argsort(distances[np.arange(len(xq))[:, None], indices], axis=1) final_indices = indices[np.arange(len(xq))[:, None], sorted_indices] final_distances = distances[np.arange(len(xq))[:, None], final_indices] return final_distances, final_indices ``` **Note**: This baseline achieves perfect recall (100%) but is too slow for large datasets. Use approximate methods like HNSW, IVF, or LSH for better speed-recall tradeoffs. Debugging Tips -------------- - **Test locally**: Use a subset of data (e.g., 10K vectors) for faster iteration - **Verify shapes**: Ensure `search` returns `(nq, k)` shaped arrays - **Check recall calculation**: `(I[:, :1] == gt[:, :1]).sum() / len(xq)` - **Profile latency**: Measure batch vs single query performance separately - **Validate before submit**: Run full 1M dataset locally if possible
{ "dependencies": { "uv_project": "resources" }, "datasets": [ { "type": "local_tar", "path": "resources/sift.tar.gz", "target": "data/sift1M", "expected_glob": "*.fvecs" } ], "runtime": { "timeout_seconds": 3600 }, "tag": "db" }
vdb_pareto/recall80_latency
research
VDB Design Problem - Recall80 Latency Tier =========================================== Problem Setting --------------- Design a Vector Database index optimized for **latency** subject to a **recall constraint**. This tier uses recall-gated scoring: solutions failing to meet the recall threshold receive zero points, while solutions meeting the constraint are scored purely by latency. **Optimization Goal**: Minimize latency within recall constraint $$ \text{score} = \begin{cases} 0 & \text{if } r < r_{\text{gate}} \\ 100 & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{query}} \leq t_{\text{min}} \\ 100 \cdot \frac{t_{\text{max}} - t_{\text{query}}}{t_{\text{max}} - t_{\text{min}}} & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{min}} < t_{\text{query}} < t_{\text{max}} \\ 0 & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{query}} \geq t_{\text{max}} \end{cases} $$ Where: - $r$: Your recall@1 - $t_{\text{query}}$: Your average query latency (ms) - $r_{\text{gate}} = 0.80$ (minimum required recall) - $t_{\text{min}} = 0.0\text{ms}$ (best possible latency) - $t_{\text{max}} = 0.6\text{ms}$ (maximum allowed latency) **Key Insight**: Unlike other tiers, this tier gates on recall and scores on latency. You MUST achieve ≥80% recall, then faster is better. Baseline Performance -------------------- - Recall@1: **0.9914** (99.14%) - Avg query time: **3.85ms** Scoring Examples ---------------- All examples assume recall constraint is met ($r \geq 0.80$): | Recall@1 | Latency | Score Calculation | Score | |----------|---------|-------------------|-------| | 0.85 | 0.00ms | $t \leq t_{\text{min}}$ → max score | **100** | | 0.85 | 0.30ms | $\frac{0.6 - 0.3}{0.6 - 0.0} = 0.50$ | **50** | | 0.82 | 0.50ms | $\frac{0.6 - 0.5}{0.6 - 0.0} = 0.167$ | **16.7** | | 0.90 | 0.10ms | $\frac{0.6 - 0.1}{0.6 - 0.0} = 0.833$ | **83.3** | | **0.75** | 0.20ms | $r < r_{\text{gate}}$ → recall gate fails | **0** | | 0.95 | **0.70ms** | $t \geq t_{\text{max}}$ → latency too high | **0** | **Note**: This is the most aggressive latency requirement (0.6ms max). You must use extreme approximation while maintaining 80% recall. API Specification ----------------- Implement a class with the following interface: ```python import numpy as np from typing import Tuple class YourIndexClass: def __init__(self, dim: int, **kwargs): """ Initialize the index for vectors of dimension `dim`. Args: dim: Vector dimensionality (e.g., 128 for SIFT1M) **kwargs: Optional parameters (e.g., M, ef_construction for HNSW) Example: index = YourIndexClass(dim=128, nlist=256, nprobe=2) """ pass def add(self, xb: np.ndarray) -> None: """ Add vectors to the index. Args: xb: Base vectors, shape (N, dim), dtype float32 Notes: - Can be called multiple times (cumulative) - Must handle large N (e.g., 1,000,000 vectors) Example: index.add(xb) # xb.shape = (1000000, 128) """ pass def search(self, xq: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray]: """ Search for k nearest neighbors of query vectors. Args: xq: Query vectors, shape (nq, dim), dtype float32 k: Number of nearest neighbors to return Returns: (distances, indices): - distances: shape (nq, k), dtype float32, L2 distances - indices: shape (nq, k), dtype int64, indices into base vectors Notes: - Must return exactly k neighbors per query - Indices should refer to positions in the vectors passed to add() - Lower distance = more similar Example: D, I = index.search(xq, k=1) # xq.shape = (10000, 128) # D.shape = (10000, 1), I.shape = (10000, 1) """ pass ``` **Implementation Requirements**: - Class can have any name (evaluator auto-discovers classes with `add` and `search` methods) - Must handle SIFT1M dataset: 1M base vectors, 10K queries, 128 dimensions - Your `search` must return tuple `(distances, indices)` with shapes `(nq, k)` - Distances should be L2 (Euclidean) or L2-squared - No need to handle dataset loading - evaluator provides numpy arrays Evaluation Process ------------------ The evaluator follows these steps: ### 1. Load Dataset ```python from faiss.contrib.datasets import DatasetSIFT1M ds = DatasetSIFT1M() xb = ds.get_database() # (1000000, 128) float32 xq = ds.get_queries() # (10000, 128) float32 gt = ds.get_groundtruth() # (10000, 100) int64 - ground truth indices ``` ### 2. Build Index ```python from solution import YourIndexClass # Auto-discovered d = xb.shape[1] # 128 for SIFT1M index = YourIndexClass(d) # Pass dimension as first argument index.add(xb) # Add all 1M base vectors ``` ### 3. Measure Performance (Batch Queries) ```python import time t0 = time.time() D, I = index.search(xq, k=1) # Search all 10K queries at once t1 = time.time() # Calculate metrics recall_at_1 = (I[:, :1] == gt[:, :1]).sum() / len(xq) avg_query_time_ms = (t1 - t0) * 1000.0 / len(xq) ``` **Important**: `avg_query_time_ms` from **batch queries** is used for scoring. Batch queries benefit from CPU cache and vectorization, typically faster than single queries. ### 4. Calculate Score ```python if recall_at_1 < 0.80: score = 0.0 elif avg_query_time_ms <= 0.0: score = 100.0 elif avg_query_time_ms >= 0.6: score = 0.0 else: proportion = (avg_query_time_ms - 0.0) / (0.6 - 0.0) score = 100.0 * (1.0 - proportion) ``` Dataset Details --------------- - **Name**: SIFT1M - **Base vectors**: 1,000,000 vectors of dimension 128 - **Query vectors**: 10,000 vectors - **Ground truth**: Precomputed nearest neighbors (k=1) - **Metric**: L2 (Euclidean distance) - **Vector type**: float32 Runtime Platform ---------------- - **Infrastructure**: Evaluations run on SkyPilot-managed cloud instances (AWS, GCP, or Azure) - **Compute**: CPU-only instances (no GPU required) - **Environment**: Docker containerized execution with Python 3, NumPy ≥1.24, FAISS-CPU ≥1.7.4 Constraints ----------- - **Timeout**: 1 hour for entire evaluation (index construction + queries) - **Memory**: Use reasonable memory (index should fit in RAM) - **Recall constraint**: recall@1 ≥ 0.80 - **Latency range**: 0.0ms ≤ avg_query_time_ms ≤ 0.6ms Strategy Tips ------------- 1. **Meet recall gate first**: Ensure ≥80% recall, otherwise score = 0 2. **Extreme approximation**: Use minimal search budget (IVF nprobe=1-3) 3. **Batch optimization critical**: 0.6ms is extremely tight, every microsecond counts 4. **Trade recall for speed**: 80-85% recall with ultra-low latency is ideal Example: Simple Baseline ------------------------- ```python import numpy as np class SimpleIndex: def __init__(self, dim: int, **kwargs): self.dim = dim self.xb = None def add(self, xb: np.ndarray) -> None: if self.xb is None: self.xb = xb.copy() else: self.xb = np.vstack([self.xb, xb]) def search(self, xq: np.ndarray, k: int) -> tuple: # Compute all pairwise L2 distances # xq: (nq, dim), xb: (N, dim) # distances: (nq, N) distances = np.sqrt(((xq[:, np.newaxis, :] - self.xb[np.newaxis, :, :]) ** 2).sum(axis=2)) # Get k nearest neighbors indices = np.argpartition(distances, k-1, axis=1)[:, :k] sorted_indices = np.argsort(distances[np.arange(len(xq))[:, None], indices], axis=1) final_indices = indices[np.arange(len(xq))[:, None], sorted_indices] final_distances = distances[np.arange(len(xq))[:, None], final_indices] return final_distances, final_indices ``` **Note**: This baseline achieves perfect recall (100%) but is too slow for large datasets. Use approximate methods like HNSW, IVF, or LSH for better speed-recall tradeoffs. Debugging Tips -------------- - **Test locally**: Use a subset of data (e.g., 10K vectors) for faster iteration - **Verify shapes**: Ensure `search` returns `(nq, k)` shaped arrays - **Check recall calculation**: `(I[:, :1] == gt[:, :1]).sum() / len(xq)` - **Profile latency**: Measure batch vs single query performance separately - **Validate before submit**: Run full 1M dataset locally if possible
{ "dependencies": { "uv_project": "resources" }, "datasets": [ { "type": "local_tar", "path": "resources/sift.tar.gz", "target": "data/sift1M", "expected_glob": "*.fvecs" } ], "runtime": { "timeout_seconds": 3600 }, "tag": "db" }
vdb_pareto/recall95_latency
research
VDB Design Problem - Recall95 Latency Tier =========================================== Problem Setting --------------- Design a Vector Database index optimized for **latency** subject to a **high recall constraint**. This tier uses recall-gated scoring: solutions failing to meet the recall threshold receive zero points, while solutions meeting the constraint are scored purely by latency. **Optimization Goal**: Minimize latency within recall constraint $$ \text{score} = \begin{cases} 0 & \text{if } r < r_{\text{gate}} \\ 100 & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{query}} \leq t_{\text{min}} \\ 100 \cdot \frac{t_{\text{max}} - t_{\text{query}}}{t_{\text{max}} - t_{\text{min}}} & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{min}} < t_{\text{query}} < t_{\text{max}} \\ 0 & \text{if } r \geq r_{\text{gate}} \text{ and } t_{\text{query}} \geq t_{\text{max}} \end{cases} $$ Where: - $r$: Your recall@1 - $t_{\text{query}}$: Your average query latency (ms) - $r_{\text{gate}} = 0.95$ (minimum required recall) - $t_{\text{min}} = 0.0\text{ms}$ (best possible latency) - $t_{\text{max}} = 7.7\text{ms}$ (maximum allowed latency) **Key Insight**: This tier requires high recall (95%), but provides generous latency budget (7.7ms). Focus on recall first, then optimize latency. Baseline Performance -------------------- - Recall@1: **0.9914** (99.14%) - Avg query time: **3.85ms** Scoring Examples ---------------- All examples assume recall constraint is met ($r \geq 0.95$): | Recall@1 | Latency | Score Calculation | Score | |----------|---------|-------------------|-------| | 0.96 | 0.00ms | $t \leq t_{\text{min}}$ → max score | **100** | | 0.96 | 3.85ms | $\frac{7.7 - 3.85}{7.7 - 0.0} = 0.50$ | **50.0** | | 0.97 | 5.00ms | $\frac{7.7 - 5.0}{7.7 - 0.0} = 0.351$ | **35.1** | | 0.98 | 2.00ms | $\frac{7.7 - 2.0}{7.7 - 0.0} = 0.740$ | **74.0** | | **0.94** | 2.00ms | $r < r_{\text{gate}}$ → recall gate fails | **0** | | 0.96 | **8.00ms** | $t \geq t_{\text{max}}$ → latency too high | **0** | **Note**: The 95% recall requirement is strict, but the 7.7ms latency budget is generous, allowing thorough search strategies. API Specification ----------------- Implement a class with the following interface: ```python import numpy as np from typing import Tuple class YourIndexClass: def __init__(self, dim: int, **kwargs): """ Initialize the index for vectors of dimension `dim`. Args: dim: Vector dimensionality (e.g., 128 for SIFT1M) **kwargs: Optional parameters (e.g., M, ef_construction for HNSW) Example: index = YourIndexClass(dim=128, M=64, ef_search=400) """ pass def add(self, xb: np.ndarray) -> None: """ Add vectors to the index. Args: xb: Base vectors, shape (N, dim), dtype float32 Notes: - Can be called multiple times (cumulative) - Must handle large N (e.g., 1,000,000 vectors) Example: index.add(xb) # xb.shape = (1000000, 128) """ pass def search(self, xq: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray]: """ Search for k nearest neighbors of query vectors. Args: xq: Query vectors, shape (nq, dim), dtype float32 k: Number of nearest neighbors to return Returns: (distances, indices): - distances: shape (nq, k), dtype float32, L2 distances - indices: shape (nq, k), dtype int64, indices into base vectors Notes: - Must return exactly k neighbors per query - Indices should refer to positions in the vectors passed to add() - Lower distance = more similar Example: D, I = index.search(xq, k=1) # xq.shape = (10000, 128) # D.shape = (10000, 1), I.shape = (10000, 1) """ pass ``` **Implementation Requirements**: - Class can have any name (evaluator auto-discovers classes with `add` and `search` methods) - Must handle SIFT1M dataset: 1M base vectors, 10K queries, 128 dimensions - Your `search` must return tuple `(distances, indices)` with shapes `(nq, k)` - Distances should be L2 (Euclidean) or L2-squared - No need to handle dataset loading - evaluator provides numpy arrays Evaluation Process ------------------ The evaluator follows these steps: ### 1. Load Dataset ```python from faiss.contrib.datasets import DatasetSIFT1M ds = DatasetSIFT1M() xb = ds.get_database() # (1000000, 128) float32 xq = ds.get_queries() # (10000, 128) float32 gt = ds.get_groundtruth() # (10000, 100) int64 - ground truth indices ``` ### 2. Build Index ```python from solution import YourIndexClass # Auto-discovered d = xb.shape[1] # 128 for SIFT1M index = YourIndexClass(d) # Pass dimension as first argument index.add(xb) # Add all 1M base vectors ``` ### 3. Measure Performance (Batch Queries) ```python import time t0 = time.time() D, I = index.search(xq, k=1) # Search all 10K queries at once t1 = time.time() # Calculate metrics recall_at_1 = (I[:, :1] == gt[:, :1]).sum() / len(xq) avg_query_time_ms = (t1 - t0) * 1000.0 / len(xq) ``` **Important**: `avg_query_time_ms` from **batch queries** is used for scoring. Batch queries benefit from CPU cache and vectorization, typically faster than single queries. ### 4. Calculate Score ```python if recall_at_1 < 0.95: score = 0.0 elif avg_query_time_ms <= 0.0: score = 100.0 elif avg_query_time_ms >= 7.7: score = 0.0 else: proportion = (avg_query_time_ms - 0.0) / (7.7 - 0.0) score = 100.0 * (1.0 - proportion) ``` Dataset Details --------------- - **Name**: SIFT1M - **Base vectors**: 1,000,000 vectors of dimension 128 - **Query vectors**: 10,000 vectors - **Ground truth**: Precomputed nearest neighbors (k=1) - **Metric**: L2 (Euclidean distance) - **Vector type**: float32 Runtime Platform ---------------- - **Infrastructure**: Evaluations run on SkyPilot-managed cloud instances (AWS, GCP, or Azure) - **Compute**: CPU-only instances (no GPU required) - **Environment**: Docker containerized execution with Python 3, NumPy ≥1.24, FAISS-CPU ≥1.7.4 Constraints ----------- - **Timeout**: 1 hour for entire evaluation (index construction + queries) - **Memory**: Use reasonable memory (index should fit in RAM) - **Recall constraint**: recall@1 ≥ 0.95 - **Latency range**: 0.0ms ≤ avg_query_time_ms ≤ 7.7ms Strategy Tips ------------- 1. **Meet recall gate first**: Ensure ≥95% recall, otherwise score = 0 2. **Use moderate approximation**: Higher recall requirement means less aggressive approximation 3. **Batch optimization is key**: Your `search` should handle batch queries efficiently 4. **Balance recall and latency**: Aim for 95-99% recall with 3-5ms latency Example: Simple Baseline ------------------------- ```python import numpy as np class SimpleIndex: def __init__(self, dim: int, **kwargs): self.dim = dim self.xb = None def add(self, xb: np.ndarray) -> None: if self.xb is None: self.xb = xb.copy() else: self.xb = np.vstack([self.xb, xb]) def search(self, xq: np.ndarray, k: int) -> tuple: # Compute all pairwise L2 distances # xq: (nq, dim), xb: (N, dim) # distances: (nq, N) distances = np.sqrt(((xq[:, np.newaxis, :] - self.xb[np.newaxis, :, :]) ** 2).sum(axis=2)) # Get k nearest neighbors indices = np.argpartition(distances, k-1, axis=1)[:, :k] sorted_indices = np.argsort(distances[np.arange(len(xq))[:, None], indices], axis=1) final_indices = indices[np.arange(len(xq))[:, None], sorted_indices] final_distances = distances[np.arange(len(xq))[:, None], final_indices] return final_distances, final_indices ``` **Note**: This baseline achieves perfect recall (100%) but is too slow for large datasets. Use approximate methods like HNSW, IVF, or LSH for better speed-recall tradeoffs. Debugging Tips -------------- - **Test locally**: Use a subset of data (e.g., 10K vectors) for faster iteration - **Verify shapes**: Ensure `search` returns `(nq, k)` shaped arrays - **Check recall calculation**: `(I[:, :1] == gt[:, :1]).sum() / len(xq)` - **Profile latency**: Measure batch vs single query performance separately - **Validate before submit**: Run full 1M dataset locally if possible
{ "dependencies": { "uv_project": "resources" }, "datasets": [ { "type": "local_tar", "path": "resources/sift.tar.gz", "target": "data/sift1M", "expected_glob": "*.fvecs" } ], "runtime": { "timeout_seconds": 3600 }, "tag": "db" }
vector_addition/2_20
research
Vector Addition Problem - Medium Vectors (2^20) ================================================ Problem Setting --------------- Design and optimize high-performance Triton kernels for vector addition on GPU with medium vectors (1,048,576 elements). This problem focuses on implementing efficient element-wise addition for typical workloads. The challenge involves optimizing: - **Memory access patterns**: Efficient loading and storing of vector data - **Block sizing**: Optimal block sizes for GPU execution - **Memory bandwidth**: Maximizing throughput for simple arithmetic operations - **Performance benchmarking**: Achieving speedup over PyTorch baseline This variant tests performance on medium vectors (2^20 = 1,048,576 elements = 4 MB per vector). Target ------ - **Primary**: Maximize bandwidth (GB/s) over PyTorch baseline (higher is better) - **Secondary**: Ensure correctness - **Tertiary**: Minimize kernel launch overhead API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Element-wise addition of two vectors. Args: x: Input tensor of shape (1048576,) y: Input tensor of shape (1048576,) Returns: Output tensor of shape (1048576,) with x + y """ pass ``` API Usage Notes --------------- - The evaluator looks for an `add` function in the module namespace - Function must handle vector size of exactly 1,048,576 elements - Must use Triton JIT compilation for kernel definition - Should optimize for memory bandwidth - Input tensors are guaranteed to be contiguous and same size Scoring (0-100) --------------- Performance is measured against CPU baseline and PyTorch GPU baseline: ``` target = max(2.0 * (pytorch_bandwidth / cpu_bandwidth), 1.0) score = ((custom_bandwidth / cpu_bandwidth - 1.0) / (target - 1.0)) * 100 Where: - custom_bandwidth = your solution's bandwidth - cpu_bandwidth = naive CPU baseline bandwidth - pytorch_bandwidth = PyTorch GPU baseline bandwidth - target = 2x PyTorch performance vs CPU (normalized to custom vs CPU) Score is clamped to [0, 100] range ``` - 0 points = CPU baseline performance (custom/cpu = 1x) - 50 points = Halfway between CPU baseline and 2x PyTorch performance - 100 points = 2x PyTorch GPU performance vs CPU (custom/cpu = 2 * pytorch/cpu) Evaluation Details ------------------ - Tested on vector size: 2^20 = 1,048,576 elements - Performance measured in GB/s (bandwidth) - Correctness verified with tolerance: rtol=1e-5, atol=1e-8 - Performance measured using median execution time across 5 samples - Requires CUDA backend and GPU support
dependencies: uv_project: resources tag: hpc runtime: environment: "Triton 3.2.0 with CUDA 12.2 (triton-tlx image)" docker: image: andylizf/triton-tlx:tlx-nv-cu122 gpu: true
vector_addition/2_24
research
Vector Addition Problem - Large Vectors (2^24) =============================================== Problem Setting --------------- Design and optimize high-performance Triton kernels for vector addition on GPU with large vectors (16,777,216 elements). This problem focuses on implementing efficient element-wise addition for high-throughput workloads. The challenge involves optimizing: - **Memory bandwidth**: Maximizing throughput for large vectors - **Memory access patterns**: Efficient loading and storing of vector data - **Block sizing**: Optimal block sizes for large vectors - **Performance benchmarking**: Achieving speedup over PyTorch baseline This variant tests performance on large vectors (2^24 = 16,777,216 elements = 64 MB per vector). Target ------ - **Primary**: Maximize bandwidth (GB/s) over PyTorch baseline (higher is better) - **Secondary**: Minimize kernel launch overhead - **Tertiary**: Ensure correctness API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Element-wise addition of two vectors. Args: x: Input tensor of shape (16777216,) y: Input tensor of shape (16777216,) Returns: Output tensor of shape (16777216,) with x + y """ pass ``` API Usage Notes --------------- - The evaluator looks for an `add` function in the module namespace - Function must handle vector size of exactly 16,777,216 elements - Must use Triton JIT compilation for kernel definition - Should optimize for small vector performance and launch overhead - Input tensors are guaranteed to be contiguous and same size Scoring (0-100) --------------- Performance is measured against CPU baseline and PyTorch GPU baseline: ``` target = max(2.0 * (pytorch_bandwidth / cpu_bandwidth), 1.0) score = ((custom_bandwidth / cpu_bandwidth - 1.0) / (target - 1.0)) * 100 Where: - custom_bandwidth = your solution's bandwidth - cpu_bandwidth = naive CPU baseline bandwidth - pytorch_bandwidth = PyTorch GPU baseline bandwidth - target = 2x PyTorch performance vs CPU (normalized to custom vs CPU) Score is clamped to [0, 100] range ``` - 0 points = CPU baseline performance (custom/cpu = 1x) - 50 points = Halfway between CPU baseline and 2x PyTorch performance - 100 points = 2x PyTorch GPU performance vs CPU (custom/cpu = 2 * pytorch/cpu) Evaluation Details ------------------ - Tested on vector size: 2^24 = 16,777,216 elements - Performance measured in GB/s (bandwidth) - Correctness verified with tolerance: rtol=1e-5, atol=1e-8 - Performance measured using median execution time across 5 samples - Requires CUDA backend and GPU support
dependencies: uv_project: resources datasets: [] tag: hpc runtime: docker: image: andylizf/triton-tlx:tlx-nv-cu122 gpu: true environment: "Triton 3.2.0 with CUDA 12.2 (triton-tlx image)"
vector_addition/2_28
research
Vector Addition Problem - Very Large Vectors (2^28) ============================================== Problem Setting --------------- Design and optimize high-performance Triton kernels for vector addition on GPU with very large vectors (268,435,456 elements). This problem focuses on implementing efficient element-wise addition for maximum throughput scenarios. The challenge involves optimizing: - **Memory access patterns**: Efficient loading and storing of large vector data - **Block sizing**: Optimal block sizes for large GPU workloads - **Memory bandwidth**: Maximizing throughput at scale - **Performance benchmarking**: Achieving speedup over PyTorch baseline This variant tests performance on very large vectors (2^28 = 268,435,456 elements = 1 GB per vector). Requires ~3 GB GPU memory total. Target ------ - **Primary**: Maximize bandwidth (GB/s) over PyTorch baseline (higher is better) - **Secondary**: Ensure correctness on large vectors - **Tertiary**: Minimize memory overhead API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Element-wise addition of two vectors. Args: x: Input tensor of shape (268435456,) y: Input tensor of shape (268435456,) Returns: Output tensor of shape (268435456,) with x + y """ pass ``` API Usage Notes --------------- - The evaluator looks for an `add` function in the module namespace - Function must handle vector size of exactly 268,435,456 elements - Must use Triton JIT compilation for kernel definition - Should optimize for maximum memory bandwidth at scale - Input tensors are guaranteed to be contiguous and same size - May cause OOM on GPUs with less than 3GB memory Scoring (0-100) --------------- Performance is measured against CPU baseline and PyTorch GPU baseline: ``` target = max(2.0 * (pytorch_bandwidth / cpu_bandwidth), 1.0) score = ((custom_bandwidth / cpu_bandwidth - 1.0) / (target - 1.0)) * 100 Where: - custom_bandwidth = your solution's bandwidth - cpu_bandwidth = naive CPU baseline bandwidth - pytorch_bandwidth = PyTorch GPU baseline bandwidth - target = 2x PyTorch performance vs CPU (normalized to custom vs CPU) Score is clamped to [0, 100] range ``` - 0 points = CPU baseline performance (custom/cpu = 1x) - 50 points = Halfway between CPU baseline and 2x PyTorch performance - 100 points = 2x PyTorch GPU performance vs CPU (custom/cpu = 2 * pytorch/cpu) Evaluation Details ------------------ - Tested on vector size: 2^28 = 268,435,456 elements - Performance measured in GB/s (bandwidth) - Correctness verified with tolerance: rtol=1e-5, atol=1e-8 - Performance measured using median execution time across 5 samples - Requires CUDA backend and GPU support - Requires sufficient GPU memory (may OOM on smaller GPUs)
dependencies: uv_project: resources datasets: [] tag: hpc runtime: docker: image: andylizf/triton-tlx:tlx-nv-cu122 gpu: true environment: "Triton 3.2.0 with CUDA 12.2 (triton-tlx image)"