wav2vec2-xls-r-300m-pt-500h-FO-500h-DK-cp-best-ft-faroese-100h-30-epochs_run9_2025-09-11

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1009
  • Wer: 18.8351
  • Cer: 4.0114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.3132 0.4877 1000 3.2545 100.0 98.0148
0.7509 0.9754 2000 0.4356 40.8644 11.0904
0.3943 1.4628 3000 0.2208 30.6208 7.6653
0.3328 1.9505 4000 0.1868 27.9376 6.8747
0.2716 2.4379 5000 0.1718 26.9243 6.5275
0.2452 2.9256 6000 0.1580 26.2810 6.2743
0.1875 3.4131 7000 0.1456 25.0430 5.9318
0.1862 3.9008 8000 0.1351 24.1177 5.6296
0.154 4.3882 9000 0.1322 23.5053 5.5547
0.1691 4.8759 10000 0.1361 23.5406 5.5657
0.1328 5.3633 11000 0.1265 22.6682 5.2533
0.1426 5.8510 12000 0.1199 22.8576 5.2556
0.1176 6.3385 13000 0.1146 22.2849 5.1373
0.1361 6.8261 14000 0.1164 22.2540 5.0899
0.1068 7.3136 15000 0.1174 22.0249 5.0355
0.1163 7.8013 16000 0.1137 21.6681 4.9345
0.1069 8.2887 17000 0.1147 21.5139 4.8958
0.1051 8.7764 18000 0.1150 21.5535 4.8722
0.0938 9.2638 19000 0.1084 21.1526 4.7799
0.1029 9.7515 20000 0.1126 21.3068 4.8169
0.0815 10.2390 21000 0.1055 21.0909 4.7254
0.0819 10.7267 22000 0.1134 21.2627 4.8059
0.0723 11.2141 23000 0.1076 20.9719 4.6765
0.0728 11.7018 24000 0.1064 20.7957 4.6189
0.0761 12.1892 25000 0.1044 20.4432 4.5424
0.0668 12.6769 26000 0.1111 20.3199 4.5432
0.0693 13.1644 27000 0.1076 20.4917 4.5258
0.06 13.6520 28000 0.1074 20.1657 4.4572
0.0625 14.1395 29000 0.1092 20.3860 4.4942
0.0642 14.6272 30000 0.1090 20.2714 4.4643
0.0587 15.1146 31000 0.1030 20.1657 4.4406
0.0574 15.6023 32000 0.1073 20.0908 4.4493
0.0623 16.0897 33000 0.1053 20.0423 4.4161
0.0545 16.5774 34000 0.1068 19.8617 4.3767
0.0474 17.0649 35000 0.1043 19.7383 4.3104
0.0471 17.5525 36000 0.1022 19.6237 4.3065
0.0492 18.0400 37000 0.1007 19.4123 4.2260
0.0402 18.5277 38000 0.1084 19.5665 4.2725
0.0465 19.0151 39000 0.0996 19.3594 4.2062
0.0446 19.5028 40000 0.1052 19.3462 4.1952
0.0377 19.9905 41000 0.1015 19.2669 4.1913
0.0389 20.4779 42000 0.1088 19.3374 4.2086
0.0318 20.9656 43000 0.1062 19.1435 4.1542
0.032 21.4531 44000 0.1026 19.1567 4.1431
0.0506 21.9407 45000 0.1036 18.9981 4.0926
0.0383 22.4282 46000 0.1026 19.1038 4.1053
0.0448 22.9159 47000 0.1046 19.0289 4.1060
0.0405 23.4033 48000 0.1017 18.9100 4.0879
0.0341 23.8910 49000 0.1014 18.9232 4.0595
0.0354 24.3784 50000 0.1018 18.8791 4.0461
0.0344 24.8661 51000 0.1025 18.9673 4.0477
0.0315 25.3536 52000 0.1020 18.9364 4.0516
0.0312 25.8413 53000 0.1008 18.8880 4.0358
0.0352 26.3287 54000 0.1009 18.8924 4.0279
0.0303 26.8164 55000 0.1008 18.8659 4.0153
0.0325 27.3038 56000 0.1020 18.8351 4.0074
0.0353 27.7915 57000 0.1017 18.8703 4.0185
0.0401 28.2790 58000 0.1017 18.8615 4.0137
0.0294 28.7666 59000 0.1010 18.8615 4.0169
0.0401 29.2541 60000 0.1010 18.8439 4.0137
0.0352 29.7418 61000 0.1009 18.8351 4.0114

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
4
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results