wav2vec2-xls-r-300m-pt-500h-FO-500h-DK-cp-best-ft-faroese-100h-30-epochs_run9_2025-09-11
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1009
- Wer: 18.8351
- Cer: 4.0114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|---|---|---|---|---|---|
| 3.3132 | 0.4877 | 1000 | 3.2545 | 100.0 | 98.0148 |
| 0.7509 | 0.9754 | 2000 | 0.4356 | 40.8644 | 11.0904 |
| 0.3943 | 1.4628 | 3000 | 0.2208 | 30.6208 | 7.6653 |
| 0.3328 | 1.9505 | 4000 | 0.1868 | 27.9376 | 6.8747 |
| 0.2716 | 2.4379 | 5000 | 0.1718 | 26.9243 | 6.5275 |
| 0.2452 | 2.9256 | 6000 | 0.1580 | 26.2810 | 6.2743 |
| 0.1875 | 3.4131 | 7000 | 0.1456 | 25.0430 | 5.9318 |
| 0.1862 | 3.9008 | 8000 | 0.1351 | 24.1177 | 5.6296 |
| 0.154 | 4.3882 | 9000 | 0.1322 | 23.5053 | 5.5547 |
| 0.1691 | 4.8759 | 10000 | 0.1361 | 23.5406 | 5.5657 |
| 0.1328 | 5.3633 | 11000 | 0.1265 | 22.6682 | 5.2533 |
| 0.1426 | 5.8510 | 12000 | 0.1199 | 22.8576 | 5.2556 |
| 0.1176 | 6.3385 | 13000 | 0.1146 | 22.2849 | 5.1373 |
| 0.1361 | 6.8261 | 14000 | 0.1164 | 22.2540 | 5.0899 |
| 0.1068 | 7.3136 | 15000 | 0.1174 | 22.0249 | 5.0355 |
| 0.1163 | 7.8013 | 16000 | 0.1137 | 21.6681 | 4.9345 |
| 0.1069 | 8.2887 | 17000 | 0.1147 | 21.5139 | 4.8958 |
| 0.1051 | 8.7764 | 18000 | 0.1150 | 21.5535 | 4.8722 |
| 0.0938 | 9.2638 | 19000 | 0.1084 | 21.1526 | 4.7799 |
| 0.1029 | 9.7515 | 20000 | 0.1126 | 21.3068 | 4.8169 |
| 0.0815 | 10.2390 | 21000 | 0.1055 | 21.0909 | 4.7254 |
| 0.0819 | 10.7267 | 22000 | 0.1134 | 21.2627 | 4.8059 |
| 0.0723 | 11.2141 | 23000 | 0.1076 | 20.9719 | 4.6765 |
| 0.0728 | 11.7018 | 24000 | 0.1064 | 20.7957 | 4.6189 |
| 0.0761 | 12.1892 | 25000 | 0.1044 | 20.4432 | 4.5424 |
| 0.0668 | 12.6769 | 26000 | 0.1111 | 20.3199 | 4.5432 |
| 0.0693 | 13.1644 | 27000 | 0.1076 | 20.4917 | 4.5258 |
| 0.06 | 13.6520 | 28000 | 0.1074 | 20.1657 | 4.4572 |
| 0.0625 | 14.1395 | 29000 | 0.1092 | 20.3860 | 4.4942 |
| 0.0642 | 14.6272 | 30000 | 0.1090 | 20.2714 | 4.4643 |
| 0.0587 | 15.1146 | 31000 | 0.1030 | 20.1657 | 4.4406 |
| 0.0574 | 15.6023 | 32000 | 0.1073 | 20.0908 | 4.4493 |
| 0.0623 | 16.0897 | 33000 | 0.1053 | 20.0423 | 4.4161 |
| 0.0545 | 16.5774 | 34000 | 0.1068 | 19.8617 | 4.3767 |
| 0.0474 | 17.0649 | 35000 | 0.1043 | 19.7383 | 4.3104 |
| 0.0471 | 17.5525 | 36000 | 0.1022 | 19.6237 | 4.3065 |
| 0.0492 | 18.0400 | 37000 | 0.1007 | 19.4123 | 4.2260 |
| 0.0402 | 18.5277 | 38000 | 0.1084 | 19.5665 | 4.2725 |
| 0.0465 | 19.0151 | 39000 | 0.0996 | 19.3594 | 4.2062 |
| 0.0446 | 19.5028 | 40000 | 0.1052 | 19.3462 | 4.1952 |
| 0.0377 | 19.9905 | 41000 | 0.1015 | 19.2669 | 4.1913 |
| 0.0389 | 20.4779 | 42000 | 0.1088 | 19.3374 | 4.2086 |
| 0.0318 | 20.9656 | 43000 | 0.1062 | 19.1435 | 4.1542 |
| 0.032 | 21.4531 | 44000 | 0.1026 | 19.1567 | 4.1431 |
| 0.0506 | 21.9407 | 45000 | 0.1036 | 18.9981 | 4.0926 |
| 0.0383 | 22.4282 | 46000 | 0.1026 | 19.1038 | 4.1053 |
| 0.0448 | 22.9159 | 47000 | 0.1046 | 19.0289 | 4.1060 |
| 0.0405 | 23.4033 | 48000 | 0.1017 | 18.9100 | 4.0879 |
| 0.0341 | 23.8910 | 49000 | 0.1014 | 18.9232 | 4.0595 |
| 0.0354 | 24.3784 | 50000 | 0.1018 | 18.8791 | 4.0461 |
| 0.0344 | 24.8661 | 51000 | 0.1025 | 18.9673 | 4.0477 |
| 0.0315 | 25.3536 | 52000 | 0.1020 | 18.9364 | 4.0516 |
| 0.0312 | 25.8413 | 53000 | 0.1008 | 18.8880 | 4.0358 |
| 0.0352 | 26.3287 | 54000 | 0.1009 | 18.8924 | 4.0279 |
| 0.0303 | 26.8164 | 55000 | 0.1008 | 18.8659 | 4.0153 |
| 0.0325 | 27.3038 | 56000 | 0.1020 | 18.8351 | 4.0074 |
| 0.0353 | 27.7915 | 57000 | 0.1017 | 18.8703 | 4.0185 |
| 0.0401 | 28.2790 | 58000 | 0.1017 | 18.8615 | 4.0137 |
| 0.0294 | 28.7666 | 59000 | 0.1010 | 18.8615 | 4.0169 |
| 0.0401 | 29.2541 | 60000 | 0.1010 | 18.8439 | 4.0137 |
| 0.0352 | 29.7418 | 61000 | 0.1009 | 18.8351 | 4.0114 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 4