MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training

MEG-XL is a brain-to-text foundation model pre-trained with 2.5 minutes of MEG context per sample (equivalent to 191k tokens). It is designed to capture extended neural context, enabling high data efficiency for decoding words from brain activity.

Usage

Instructions for environment setup, tokenizer (BioCodec) requirements, and data preparation are available in the official GitHub repository.

Fine-tuning MEG-XL for Brain-to-Text

You can fine-tune or evaluate the model on word decoding tasks using the following command structure:

python -m brainstorm.evaluate_criss_cross_word_classification \
    --config-name=eval_criss_cross_word_classification_{armeni, gwilliams, libribrain} \
    model.criss_cross_checkpoint=/path/to/your/checkpoint.ckpt

Linear Probing

To perform linear probing, use:

python -m brainstorm.evaluate_criss_cross_word_classification \
    --config-name=eval_criss_cross_word_classification_linear_probe_{armeni, gwilliams, libribrain} \
    model.criss_cross_checkpoint=/path/to/your/checkpoint.ckpt

Requirements

  • Python >= 3.12
  • High-VRAM GPU (>= 40-80GiB depending on the task).
  • Access to the BioCodec tokenizer code and weights.

Citation

If you find this work helpful in your research, please cite:

@article{jayalath2026megxl,
  title={{MEG-XL}: Data-Efficient Brain-to-Text via Long-Context Pre-Training},
  author={Jayalath, Dulhan and Parker Jones, Oiwi},
  journal={arXiv preprint arXiv:2602.02494},
  year={2026}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Papers for pnpl/MEG-XL