It's exactly this model https://github.com/i-need-sleep/referee/ made so that it is easier to run.
'''
Code from i-need-sleep https://github.com/i-need-sleep/referee/tree/main/code
'''
import torch
from transformers import AutoModel, AutoTokenizer
class DebertaForEval(torch.nn.Module):
def __init__(self, model_path, device='cuda', n_supervision=13, head_type='linear', backbone='deberta'):
super(DebertaForEval, self).__init__()
self.n_supervision = n_supervision
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.deberta = AutoModel.from_pretrained(model_path)
self.backbone = backbone
if backbone == 'deberta':
self.hidden_size = 768
elif backbone == 'roberta':
self.hidden_size = 1024
else:
raise NotImplementedError
self.head_type = head_type
if head_type == 'mlp':
self.regression_heads_layer_1 = torch.nn.ModuleList([torch.nn.Linear(self.hidden_size, 512) for i in range(n_supervision)])
self.regression_heads_layer_2 = torch.nn.ModuleList([torch.nn.Linear(512, 1) for i in range(n_supervision)])
self.relu = torch.nn.ReLU()
elif head_type == 'linear':
self.linear_out = torch.nn.ModuleList([torch.nn.Linear(self.hidden_size, 1) for i in range(n_supervision)])
else:
raise NotImplementedError
self.to(device)
self.float()
def forward(self, sents):
if self.backbone == 'deberta':
tokenized = self.tokenizer(sents, padding=True, truncation=True, max_length=512)
if len(tokenized['input_ids']) >= 512:
print("Warning: input exceeds 512 tokens.")
input_ids = torch.tensor(tokenized['input_ids']).to(self.device)
token_type_ids = torch.tensor(tokenized['token_type_ids']).to(self.device)
attention_mask = torch.tensor(tokenized['attention_mask']).to(self.device)
model_out = self.deberta(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0][:, 0, :] # Take the emb for the first token
elif self.backbone == 'roberta':
encoded_input = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True, max_length=512)
for key, val in encoded_input.items():
encoded_input[key] = val.to(self.device)
model_out = self.deberta(**encoded_input)[0][:, 0, :]
else:
raise NotImplementedError
heads_out = []
for head_idx in range(self.n_supervision):
if self.head_type == 'mlp':
head_out = self.regression_heads_layer_1[head_idx](model_out)
head_out = self.relu(head_out)
head_out = self.regression_heads_layer_2[head_idx](head_out)
heads_out.append(head_out)
elif self.head_type == 'linear':
head_out = self.linear_out[head_idx](model_out)
heads_out.append(head_out)
heads_out = torch.cat(heads_out, dim=1)
return heads_out # [batch_size, n_head]
model = DebertaForEval('snisioi/referee', head_type='linear')
example_complex = """This book constitutes an argument for the power of Marxism to analyse the issues that face women today in their struggle for liberation."""
example_simple = """This book explains how Marxism can help us understand the problems women face."""
model_input = [example_complex + ' ' + model.tokenizer.sep_token + ' ' + example_simple]
model_out = model(model_input)
score = model_out[:, -1].item()
print(score)
- Downloads last month
- 27
Model tree for snisioi/referee
Base model
microsoft/deberta-v3-base