Adyghe - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Adyghe Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.406x 3.41 0.1685% 137,125
16k 3.759x 3.76 0.1859% 124,248
32k 4.197x πŸ† 4.20 0.2076% 111,273

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Ермэлхэр β€” ΠšΠ°Π²ΠΊΠ°Π·Ρ‹ΠΌ ыкӏи Π΄ΡƒΠ½Π°Π΅ΠΌ Ρ‚Π΅Ρ‚ лъэпкъ ΠΆΡŠΡ‹Π΄ΡΠ΄ΡΠΌΡ Π°Ρ‰Ρ‹Ρ‰Ρ‹Ρ…. АрмСниС

Vocab Tokens Count
8k ▁Срмэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаСм ▁тСт β–Π»ΡŠΡΠΏΠΊΡŠ β–ΠΆΡŠΡ‹Π΄ΡΠ΄ΡΠΌΡ ▁ащыщых . ... (+1 more) 11
16k ▁Срмэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаСм ▁тСт β–Π»ΡŠΡΠΏΠΊΡŠ β–ΠΆΡŠΡ‹Π΄ΡΠ΄ΡΠΌΡ ▁ащыщых . ... (+1 more) 11
32k ▁Срмэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаСм ▁тСт β–Π»ΡŠΡΠΏΠΊΡŠ β–ΠΆΡŠΡ‹Π΄ΡΠ΄ΡΠΌΡ ▁ащыщых . ... (+1 more) 11

Sample 2: Π’Σ€ΡΡˆΡŠΡƒ Π‘Π²Π΅Ρ‚Π»Π°Π½ (УрысыбзэкӀэ: Π‘Π²Π΅Ρ‚Π»Π°Π½Π° ВСшСва) Адыгэ Турналист АдыгСим Ρ‰Ρ‹Ρ‰.

Vocab Tokens Count
8k ▁тӏэ ΡˆΡŠΡƒ ▁свСтлан ▁( урысыбзэкӏэ : ▁свСтлан Π° ▁тС шС ... (+7 more) 17
16k ▁тӏэ ΡˆΡŠΡƒ ▁свСтлан ▁( урысыбзэкӏэ : ▁свСтлана β–Ρ‚Π΅ΡˆΠ΅Π²Π° ) ▁адыгэ ... (+4 more) 14
32k β–Ρ‚ΣΡΡˆΡŠΡƒ ▁свСтлан ▁( урысыбзэкӏэ : ▁свСтлана β–Ρ‚Π΅ΡˆΠ΅Π²Π° ) ▁адыгэ ▁Турналист ... (+3 more) 13

Sample 3: ΠΡˆΡ€Π°ΠΉ - Π±Ρ‹ΡΠ»ΡŠΡ‹ΠΌΡΠ½ΠΌΡ ΠΊΡŠΡƒΡ€ΠΌΡΠ½Ρ‹ΠΌ Ρ‹ΡƒΠΆ мэфэ Π³ΡŠΡΠ½ΡΡ„Π°Π³ΡŠΡΠΌ Ρ‰Π°Π³ΡŠΡΠΆΡŠΠΎΡ€Ρ стырыпс. category

Vocab Tokens Count
8k β–Π°Ρˆ Ρ€Π°ΠΉ ▁- β–Π±Ρ‹ΡΠ»ΡŠΡ‹ΠΌΡΠ½ мэ β–ΠΊΡŠΡƒΡ€ мэным ▁ыуТ ▁мэфэ β–Π³ΡŠΡΠ½ΡΡ„ ... (+9 more) 19
16k β–Π°Ρˆ Ρ€Π°ΠΉ ▁- β–Π±Ρ‹ΡΠ»ΡŠΡ‹ΠΌΡΠ½ мэ β–ΠΊΡŠΡƒΡ€ΠΌΡΠ½Ρ‹ΠΌ ▁ыуТ ▁мэфэ β–Π³ΡŠΡΠ½ΡΡ„Π°Π³ΡŠΡΠΌ β–Ρ‰Π°Π³ΡŠΡ ... (+4 more) 14
32k β–Π°ΡˆΡ€Π°ΠΉ ▁- β–Π±Ρ‹ΡΠ»ΡŠΡ‹ΠΌΡΠ½ΠΌΡ β–ΠΊΡŠΡƒΡ€ΠΌΡΠ½Ρ‹ΠΌ ▁ыуТ ▁мэфэ β–Π³ΡŠΡΠ½ΡΡ„Π°Π³ΡŠΡΠΌ β–Ρ‰Π°Π³ΡŠΡΠΆΡŠΠΎΡ€Ρ ▁стырыпс . ... (+1 more) 11

Key Findings

  • Best Compression: 32k achieves 4.197x compression
  • Lowest UNK Rate: 8k with 0.1685% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 453 8.82 625 42.6% 100.0%
2-gram Subword 407 πŸ† 8.67 2,126 56.6% 97.3%
3-gram Word 759 9.57 977 31.6% 100.0%
3-gram Subword 2,854 11.48 11,856 24.3% 64.6%
4-gram Word 2,909 11.51 3,378 13.2% 45.0%
4-gram Subword 10,911 13.41 36,062 12.4% 39.2%
5-gram Word 2,658 11.38 2,950 12.2% 45.6%
5-gram Subword 21,199 14.37 52,393 8.2% 28.3%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 нэбгырэ ΠΌΠ»Π½ 168
2 ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу 104
3 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ 89
4 Π΄Π»ΠΎ ΠΌ 87
5 адыгэ рСспубликэм 80

3-grams (Word):

Rank N-gram Count
1 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу 76
2 ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 70
3 адыгэ рСспубликэм ΠΈ 46
4 Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ 44
5 ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ 39

4-grams (Word):

Rank N-gram Count
1 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 45
2 Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ 39
3 Суропэм хэт ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 23
4 амСрикэм ΠΈΡ‚ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 19
5 Π°Π·ΠΈΠ΅ΠΌ ΠΈΡ‚ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 18

5-grams (Word):

Rank N-gram Count
1 ΠΊΠΌ Π³ΡŠΠΎΠ³Ρƒ щыӏ ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ ис 17
2 Π³ΡŠΠΎΠ³Ρƒ щыӏ ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ ис цӏыфхэр 17
3 щыӏ ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ ис цӏыфхэр ΠΈΠ»ΡŠΡΡΡ…ΡΠΌ 17
4 ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ ис цӏыфхэр ΠΈΠ»ΡŠΡΡΡ…ΡΠΌ тСтэу 17
5 ис цӏыфхэр ΠΈΠ»ΡŠΡΡΡ…ΡΠΌ тСтэу ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ 17

2-grams (Subword):

Rank N-gram Count
1 г ъ 9,326
2 ъ э 9,249
3 э _ 8,792
4 ΠΌ _ 7,740
5 э Ρ€ 6,822

3-grams (Subword):

Rank N-gram Count
1 г ъ э 4,961
2 _ к ъ 4,140
3 э м _ 3,581
4 Ρ‹ Π³ ъ 3,362
5 э Ρ€ _ 3,020

4-grams (Subword):

Rank N-gram Count
1 Ρ‹ Π³ ъ э 1,902
2 Ρ… э Ρ€ _ 1,448
3 а г ъ э 1,342
4 Ρ… э ΠΌ _ 1,303
5 _ к ъ э 1,289

5-grams (Subword):

Rank N-gram Count
1 _ Π° Π΄ Ρ‹ Π³ 1,062
2 Π° Π΄ Ρ‹ Π³ э 978
3 _ и л ъ э 670
4 Π΄ Ρ‹ Π³ э _ 651
5 и л ъ э с 627

Key Findings

  • Best Perplexity: 2-gram (subword) with 407
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~28% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.4341 1.351 2.09 22,655 56.6%
1 Subword 1.4193 2.674 10.02 450 0.0%
2 Word 0.0766 1.055 1.12 46,851 92.3%
2 Subword 1.1376 2.200 5.57 4,503 0.0%
3 Word 0.0248 1.017 1.04 51,794 97.5%
3 Subword 0.7466 1.678 2.95 25,044 25.3%
4 Word 0.0130 πŸ† 1.009 1.02 53,002 98.7%
4 Subword 0.4264 1.344 1.85 73,859 57.4%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. ΠΈ Π΄Π³ΡŠΡΠΏΡΡ‹Ρ„Ρ‹Π½ΡƒΡ‰ адыгэ Π»ΡŠΡΠΏΠΊΡŠΡ‹ΠΌ ΠΈ 29 ΠΌ Π½ Ρ„ Ρ„ Ρ„ Ρ„ Ρ… Ρ… Ρ… Ρ…ΡŠ
  2. адыгэ хэхэсхэм Π°Ρ‰Ρ‹ΡƒΡ…ΡŠΡƒΠΌΡΠ½ Ρ‹Π»ΡŠΡΠΊΣΡ‹Π³ΡŠ ΠΌΡ‹Ρ…ΡŠΡƒΠ³ΡŠΡ ΠΌΡ‹ΡˆΣΠ°Π³ΡŠΡΡ…ΡΡ€ Ρ‹Π³Ρƒ ΠΈΡ‚ Ρ‚Π°Ρ€ΠΈΡ…ΡŠ лъапсэ иӏэу ΠΊΣΡΡ…ΡŒΠ°ΠΏΣΡΡ€ ӏатау ...
  3. ΠΌ Π°Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ Ρ‚Ρ…ΡŒΠ°ΠΌΠ°Ρ‚ΡΡ€ Ρ…Π°Π»Π΅Π΄ Π±Π°Ρ…Π°Ρ… Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ Суропэм Ρ‹Π³Ρƒ Ρ€ΠΈΡ…ΡŒ Ρ€ΠΈΠΌΡ‹Ρ…ΡŒΠΌΡ тСтэу ΠΊΡŠΡƒΠ°Π΄ΠΆΡΠΌ ис цӏыфхэр...

Context Size 2:

  1. нэбгырэ ΠΌΠ»Π½ 1 3 фэдиз Ρ†1ыфэу дэс Π°Ρƒ Ρ…ΡŒΠ°Π½ΡΠ³ΡŠΡƒΠ½ΡΡ€ ΠΈΠ±Π³ΡŠΡΠ³ΡŠΡƒΡΡΠΆΡŒΠΌΡ ΠΌΠ»Π½ 18 фэдиз ΠΌΡΡ…ΡŠΡƒ щыпсэухэрэм ромэ ΠΊ...
  2. ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу я 67 Π½ΠΎΡ€Π²Π΅Π³Ρ‹Π±Π· Π΄Π»ΠΎ ΠΌ Π°Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ эдгар ринкСвичс ΠΊΡŠΡΡ€Π°Π» Ρ‚Ρ…ΡŒΠ°ΠΌΠ°Ρ‚ΡΡ€ ΡƒΠ»ΡŒΡ„ кристСрссон ...
  3. ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 1 240 192 ΠΊΠΌ францыбзэ ΠΊΡŠΡΡ€Π°Π» яйи Π±ΠΎΠ½ΠΈ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ Ρ‚Ρ…ΡŒΠ°ΠΌΠ°Ρ‚ΡΡ€ Ρ…Π°Π»ΠΈΡ„Π° Π±Π΅Π½ салман

Context Size 3:

  1. ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 147 570 ΠΊΠΌ бСнгалыбзэ Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ абдСль Π°Π·ΠΈΠ· Π±ΡƒΡ‚Π΅Ρ„Π»ΠΈΠΊΠ° ΠΊΡŠΡΡ€Π°Π» Ρ‚Ρ…ΡŒΡΠΌ...
  2. ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 140 800 ΠΊΠΌ Π½Π΅ΠΏΠ°Π»ΠΈ Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Π΅Π· ΠΌ Ρ…ΡΡ…ΡŒΠ°Π½ΡΡƒ ΡƒΠ½Π°ΡˆΡŠΠΎ Ρ‰Ρ‹Ρ‚ Π΅Π· ΠΌ ΠΈ
  3. адыгэ рСспубликэм ΠΈ ΠΏΡΡ‹Ρ…ΡŠΡƒ Π° ΠΏΡΡ‹Ρ…ΡŠΠΎΠΌ ΠΏΡΠ±Π»Π°Π³ΡŠΡΡƒ Ρ‰Ρ‹Ρ‚ ΠΊΡŠΡƒΠ°ΠΆΡ

Context Size 4:

  1. ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум чӏырэу иӏэр 322 460 ΠΊΠΌ Π±Π·ΡΡˆΡŠΡ…ΡŒΠ°ΣΡΡ…ΡΡ€ францыбзэ ΠΊΡŠΡΡ€Π°Π» Π»ΣΡ‹ΡˆΡŠΡ…ΡŒΡΡ€ алассан ΡƒΠ°Ρ‚Ρ‚...
  2. Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ султанэу кабоос Π±ΠΈΠ½ саид аль саид Ρ…ΡΠ³ΡŠΡΠ³Ρƒ Ρ‚Ρ…ΡŒΠ°ΠΌΠ°Ρ‚ΡΡ€ Ρ„Π°Ρ…Π΄ Π±ΠΈΠ½ ΠΌΠ°Ρ…ΡŒΠΌΡƒΠ΄ Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ Π°...
  3. Суропэм хэт ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ Ρ‚ΠΈΡ€Π°Π½Π° нэбгырэ ΠΌΠ»Π½ 3 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 9 984 670 ΠΊΠΌ я 2 англыбзэ

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _ΡˆΡ…Π°ΠΆΡŠΡ‹Ρ€ΡΠΌ_Π°Ρ‰Ρ‚Π΅ΠΌ
  2. ΡΠ³Π΅ΠΊΡŠΡΡΡ…Ρ_Π°Ρ€ΠΈ_ΠΏΡ‡
  3. Ρ‹Π³Ρƒ,_цинащырыхэ_

Context Size 2:

  1. Π³ΡŠΡΠΏΡΡ‹Ρ€_зэрэ_ӏуад
  2. ъэп_Π²Ρƒ_Π°Π΄Ρ‹Π³ΡŠΡΡ…ΡŒΡ‹Π½
  3. э_зыгэ_ΠΆ_дангьэ_Ρ‚

Context Size 3:

  1. Π³ΡŠΡΠΊΡŠΡ…ΡΡ€,_кӏэ,_Π³ΡƒΠΌ
  2. _ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡΠ΄ΡƒΠ½ΡΠΆΡŠΡ‹
  3. эм_ΠΈ_–_зэрал_нэхэр

Context Size 4:

  1. Ρ‹Π³ΡŠΡ_Π³ΡŠΡΠΌΡ€Ρ_ΠΏΡ€ΠΈΡ€ΡƒΡ‡ΠΈ
  2. хэр_Π±ΠΆΡŠΡΠ΄Ρ‹Π³ΡŠΡƒΠ°ΠΏΡ_зэ
  3. Π°Π³ΡŠΡΡ…ΡŒΠ°Π½_Ρ…ΡƒΠ΅ΠΉΡ‰,_ахэ

Key Findings

  • Best Predictability: Context-4 (word) with 98.7% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (73,859 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 7,120
Total Tokens 45,308
Mean Frequency 6.36
Median Frequency 3
Frequency Std Dev 22.08

Most Common Words

Rank Word Frequency
1 ΠΈ 999
2 адыгэ 660
3 ΠΌ 508
4 ΠΈΠ»ΡŠΡΡΡ‹ΠΌ 406
5 Π°Ρ‰ 391
6 я 320
7 Π°Ρ€Ρ‹ 274
8 Π° 257
9 нэбгырэ 250
10 Π΅ 223

Least Common Words (from vocabulary)

Rank Word Frequency
1 muzea 2
2 britishpedia 2
3 encyklopedia 2
4 osobistoΕ›ci 2
5 rzeczypospolitej 2
6 polskiej 2
7 bph 2
8 british 2
9 publishing 2
10 ltd 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.7863
RΒ² (Goodness of Fit) 0.977814
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 28.8%
Top 1,000 60.5%
Top 5,000 90.6%
Top 10,000 0.0%

Key Findings

  • Zipf Compliance: RΒ²=0.9778 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 28.8% of corpus
  • Long Tail: -2,880 words needed for remaining 100.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.4880 0.4410 N/A N/A
mono_64d 64 0.2186 0.3951 N/A N/A
mono_128d 128 0.0372 0.3901 N/A N/A
aligned_32d 32 0.4880 πŸ† 0.4477 0.0460 0.3851
aligned_64d 64 0.2186 0.3901 0.2011 0.7701
aligned_128d 128 0.0372 0.3927 0.2759 0.8103

Key Findings

  • Best Isotropy: aligned_32d with 0.4880 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.4094. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 27.6% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 0.610 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-къ ΠΊΡŠΡ‡Ρ€, къэлэшъо, къо
-зэ Π·ΡΡ€ΡΡ…ΡŠΡƒΠ³ΡŠΡΡ…ΡΠΌ, Π·ΡΡ„ΡΡˆΡŠΡ…ΡŒΠ°Ρ„, Π·ΡΡ…ΠΈΠ³ΡŠΡΡƒΡ†ΠΎΠ³ΡŠΡΠ³ΡŠΡ
-ΠΊΡŠΡ‹ ΠΊΡŠΡ‹ΣΡƒΠ°Π³ΡŠ, ΠΊΡŠΡ‹Ρ‰Ρ‹Ρ„ΡΡ„Π΅Π΄ΡΡ‰Ρ‚Ρ…ΡΡƒ, ΠΊΡŠΡ‹Π³ΡŠΡΡƒΡ†ΡƒΠ³ΡŠΡ

Productive Suffixes

Suffix Examples
-э литСратуровСдчСскэ, уидТыбэ, Π»ΡŠΡ‹ΠΌΡ€Ρ
-ΠΌ Π·Π°ΠΏΠΎΠ²Π΅Π΄Π½ΠΈΠΊΡ‹ΠΌ, Ρ…ΡŠΡƒΠ°Π³ΡŠΡΠΌ, ипэм
-Ρ€ тхэныр, Ρ…ΡƒΠ½Π³Π°Ρ€ΠΈΠ΅Ρ€, ΠΊΡŠΡ‡Ρ€
-эр Π°Π»ΡŠΡ‹Ρ‚ΡΡ‰Ρ‚Ρ‹Π³ΡŠΡΡ€, тхыбзэр, Ρ‹Π»ΡŠΡΠ³ΡŠΡƒΡ€ΡΡ€
-эм Ρ…ΡŠΡƒΠ°Π³ΡŠΡΠΌ, ипэм, ΠΏΡΠ°Π»ΡŠΡΠΆΡŒΡ…ΡΠΌ
-эу цӏэу, Π΄ΡΠ»ΡŠΡΡƒ, щысэу
-хэр тыркухэр, Π΅ΠΆΡŒΡ…ΡΡ€, ахэр
-рэ Π»ΡŠΡ‹ΠΌΡ€Ρ, цӏэмрэ, зыфиӏорэ

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Ρ‚Ρ‹Π³ΡŠ 1.84x 28 contexts Ρ‚Ρ‹Π³ΡŠΡ, Ρ‚Ρ‹Π³ΡŠΡƒ, ΠΈΡ‚Ρ‹Π³ΡŠ
эпкъ 1.90x 25 contexts нэпкъ, Ρ‚Ρ…ΡΠΏΠΊΡŠ, лъэпкъ
ъагъ 2.25x 14 contexts лъагъо, ΠΏΡ‡ΡŠΠ°Π³ΡŠ, ΠΏΡ‡ΡŠΠ°Π³ΡŠΡ
агъэ 1.63x 39 contexts благъэ, Ρ‚Ρ…Π°Π³ΡŠΡ, ΠΏΡ‡Π°Π³ΡŠΡ
дыгэ 2.03x 14 contexts адыгэ, адыгэу, адыгэм
ΠΊΡŠΡƒΠ° 2.23x 10 contexts ΠΊΡŠΡƒΠ°Π΅, ΠΊΡŠΡƒΠ°ΠΆΡ, ΠΊΡŠΡƒΠ°Π΄ΠΆ
эхэр 1.72x 20 contexts бэхэр, дзэхэр, усэхэр
ΡŠΡ…ΡŒΡ 1.84x 16 contexts ΡˆΡŠΡ…ΡŒΡ, ΠΏΡˆΡŠΡ…ΡŒΡ, ΡˆΡŠΡ…ΡŒΡΠΌ
псэу 1.70x 20 contexts упсэу, щэпсэу, щыпсэу
ΡˆΡŠΡ…ΡŒ 1.61x 23 contexts ΡˆΡŠΡ…ΡŒΡ, ΠΏΡˆΡŠΡ…ΡŒΡ, ΡˆΡŠΡ…ΡŒΡΠΌ
Ρ‹Π³ΡŠΠΎ 1.66x 19 contexts Ρ†Ρ‹Π³ΡŠΠΎ, ΠΌΡ‹Π³ΡŠΠΎ, Ρ†Ρ‹Π³ΡŠΠΎΡ€
Π³ΡŠΡΡ… 1.79x 14 contexts Π±Π°Π³ΡŠΡΡ…, ΡΣΠ°Π³ΡŠΡΡ…, Ρ‚Ρ…Ρ‹Π³ΡŠΡΡ…

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-къ -э 94 words ΠΊΡŠΠΎΡ…ΡŒΠ°ΠΏΣΡ, ΠΊΡŠΡ‹Ρ…Π°ΡƒΡ‚Ρ‹Π³ΡŠΡ
-къ -Ρ€ 64 words ΠΊΡŠΠ°Π±Π·ΡΡ€, ΠΊΡŠΡ‹Π·ΡΠ΄Ρ‹Ρ…ΡΡ„ΡΠ½Ρ‹Ρ€
-къ -ΠΌ 56 words ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒΡΠΌ, ΠΊΡŠΡƒΠ½Π΅Ρ‚Ρ€ΡΠΌ
-къ -эр 52 words ΠΊΡŠΠ°Π±Π·ΡΡ€, ΠΊΡŠΡƒΠ°Π΄ΠΆΡΡ…ΡΡ€
-зэ -Ρ€ 43 words зэрСдТэхэр, зэрар
-зэ -ΠΌ 41 words Π·ΡΠ±Π»ΡΡ‚Ρ…ΡŠΡƒΠ½Ρ‹ΠΌ, Π·ΡΡ€Π°Π³ΡŠΡΡ‚ΡΡ€ΡΠ·Ρ‹ΠΆΡŒΡ‹Π³ΡŠΡΠΌ
-къ -эм 36 words ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒΡΠΌ, ΠΊΡŠΡƒΠ½Π΅Ρ‚Ρ€ΡΠΌ
-зэ -эр 34 words зэрСдТэхэр, Π·ΡΠΏΡ‹Ρ€Ρ‹Π±Π³ΡŠΡΠ·ΡΠΆΡŒΡ‹Π½Ρ…ΡΡ€
-къ -эу 33 words ΠΊΡŠΡ‹Ρ‰Π΅Π³ΡŠΡΠΆΡŒΠ°Π³ΡŠΡΡƒ, ΠΊΡŠΠΈΠ½ΡΡƒ
-зэ -э 31 words Π·ΡΠΊΡŠΠΎΡ‚Ρ‹Π½Ρ‹Π³ΡŠΡ, Π·ΡΡ€Π°Π»ΡΠΆΡŒΡ‹Ρ€Ρ

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
рСспубликэмрэ рСспублик-эм-рэ 6.0 рСспублик
ΠΌΠ°ΠΊΡŠΡΡ…ΡΠΌΡ€Ρ макъэ-хэм-рэ 6.0 макъэ
литСратурэмрэ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€-эм-рэ 6.0 Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€
Π±Π»Π°Π³ΡŠΠΎΡ…ΡΠΌΡ€Ρ благъо-хэм-рэ 6.0 благъо
Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠΡΠΌΡ€Ρ Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠ-эм-рэ 6.0 Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠ
литСратурэр Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€-эр 4.5 Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€
диалСктэу Π΄ΠΈΠ°Π»Π΅ΠΊΡ‚-эу 4.5 Π΄ΠΈΠ°Π»Π΅ΠΊΡ‚
Π°Π³ΡŠΡΡ„Π΅Π΄ΡΡ€Ρ Π°Π³ΡŠΡΡ„Π΅Π΄Ρ-рэ 4.5 Π°Π³ΡŠΡΡ„Π΅Π΄Ρ
ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚ΡΡƒ ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚-эу 4.5 ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚
Π·Ρ‹ΠΊΡŠΡΠ·Ρ‹ΣΡΡ‚Ρ‹Π³ΡŠΡΠΌ Π·Ρ‹ΠΊΡŠΡΠ·Ρ‹ΣΡΡ‚Ρ‹Π³ΡŠ-эм 4.5 Π·Ρ‹ΠΊΡŠΡΠ·Ρ‹ΣΡΡ‚Ρ‹Π³ΡŠ
ΠΈΡˆΡŠΡ…ΡŠΡΡ€ΡΠΌΡ€Ρ ΠΈΡˆΡŠΡ…ΡŠ-эр-эм-рэ 4.5 ΠΈΡˆΡŠΡ…ΡŠ
адэмыСхэр адэмыС-хэр 4.5 адэмыС
Π·ΡΠΊΡŠΠΎΡƒΡ†ΠΎΡ…ΡΡƒ зэ-къ-ΠΎΡƒΡ†ΠΎΡ…-эу 4.5 ΠΎΡƒΡ†ΠΎΡ…
ыгузэгухэм ыгузэгу-хэм 4.5 ыгузэгу
Π±Π΅ΡΠ»ΡŠΡΠ½Π΅ΠΉΡ…ΡΡ€ бСслъэнСй-хэр 4.5 бСслъэнСй

6.6 Linguistic Interpretation

Automated Insight: The language Adyghe shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 32k BPE Best compression (4.20x)
N-gram 2-gram Lowest perplexity (407)
Markov Context-4 Highest predictability (98.7%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 18:25:02

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/ady