CE - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on CE Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 2.792x 2.80 0.9604% 543,837
16k 3.140x 3.15 1.0803% 483,478
32k 3.480x 3.49 1.1970% 436,328
64k 3.783x πŸ† 3.79 1.3016% 401,281

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Жаныспай (Акмолан ΠΎΠ±Π»Π°ΡΡ‚ΡŒ) Жаныспай (ΠšΠΎΡΡ‚Π°Π½Π°ΠΉΠ½ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ)

Vocab Tokens Count
8k ▁Тан ыс ΠΏ Π°ΠΉ ▁( Π°ΠΊ ΠΌΠΎΠ»Π°Π½ β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁Тан ... (+8 more) 18
16k ▁Тан ыс ΠΏΠ°ΠΉ ▁( Π°ΠΊΠΌΠΎΠ»Π°Π½ β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁Тан ыс ΠΏΠ°ΠΉ ... (+5 more) 15
32k ▁Тан ыс ΠΏΠ°ΠΉ ▁( Π°ΠΊΠΌΠΎΠ»Π°Π½ β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁Тан ыс ΠΏΠ°ΠΉ ... (+4 more) 14
64k ▁Тан ыс ΠΏΠ°ΠΉ ▁( Π°ΠΊΠΌΠΎΠ»Π°Π½ β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁Тан ыс ΠΏΠ°ΠΉ ... (+4 more) 14

Sample 2: Антиго (Висконсин) Антиго (Маса-ΠšΠ°Ρ€Π°Ρ€Π°) Антиго (Π³Σ€Π°Π»Π°, Висконсин)

Vocab Tokens Count
8k ▁анти Π³ΠΎ ▁( Π²ΠΈ сконсин ) ▁анти Π³ΠΎ ▁( ΠΌΠ° ... (+12 more) 22
16k ▁анти Π³ΠΎ ▁( висконсин ) ▁анти Π³ΠΎ ▁( ΠΌΠ° са ... (+11 more) 21
32k ▁анти Π³ΠΎ ▁( висконсин ) ▁анти Π³ΠΎ ▁( маса - ... (+9 more) 19
64k ▁анти Π³ΠΎ ▁( висконсин ) ▁анти Π³ΠΎ ▁( маса - ... (+9 more) 19

Sample 3: Π‘Π°Ρ€Π΄Π° (Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊΠ°Π½ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ) Π‘Π°Ρ€Π΄Π° (ΠŸΠ΅Ρ€ΠΌΠΈΠΉΠ½ ΠΌΠΎΡ…ΠΊ) Π‘Π°Ρ€Π΄Π° (Π³Σ€Π°Π»Π°)

Vocab Tokens Count
8k ▁бар Π΄Π° ▁( иркутскан β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁бар Π΄Π° ▁( ΠΏΠ΅Ρ€ΠΌΠΈΠΉΠ½ ... (+7 more) 17
16k ▁бар Π΄Π° ▁( иркутскан β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁бар Π΄Π° ▁( ΠΏΠ΅Ρ€ΠΌΠΈΠΉΠ½ ... (+7 more) 17
32k ▁барда ▁( иркутскан β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁барда ▁( ΠΏΠ΅Ρ€ΠΌΠΈΠΉΠ½ ▁мохк ) ... (+4 more) 14
64k ▁барда ▁( иркутскан β–ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ) ▁барда ▁( ΠΏΠ΅Ρ€ΠΌΠΈΠΉΠ½ ▁мохк ) ... (+4 more) 14

Key Findings

  • Best Compression: 64k achieves 3.783x compression
  • Lowest UNK Rate: 8k with 0.9604% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 2,545 11.31 100,140 25.5% 70.0%
2-gram Subword 423 πŸ† 8.72 6,176 55.1% 98.2%
3-gram Word 3,286 11.68 157,541 21.2% 65.9%
3-gram Subword 2,337 11.19 58,954 23.8% 69.8%
4-gram Word 4,089 12.00 330,019 18.2% 63.2%
4-gram Subword 5,832 12.51 337,533 16.4% 50.9%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 Π½Π°Ρ… Π±Π΅Ρ…Π° 927,008
2 Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ 876,464
3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ 387,483
4 ΠΊΠ»ΠΈΠΌΠ°Ρ‚ ΠΊΡ…ΡƒΠ·Π°Ρ…ΡŒ 294,017
5 ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса 272,866

3-grams (Word):

Rank N-gram Count
1 Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ 876,426
2 ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° 256,950
3 ΠΊΠ»ΠΈΠΌΠ°Ρ‚ ΠΊΡ…ΡƒΠ·Π°Ρ…ΡŒ ΠΊΠ»ΠΈΠΌΠ°Ρ‚ 254,686
4 Π±Π°Ρ…Π°Ρ€Ρ…ΠΎΠΉ Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ 156,558
5 ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ 135,690

4-grams (Word):

Rank N-gram Count
1 ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ 256,946
2 лСлаш Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса 134,397
3 нийса лСлаш Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ 134,397
4 ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ utc 133,768
5 Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ 133,768

2-grams (Subword):

Rank N-gram Count
1 Π° _ 8,696,976
2 . _ 8,337,924
3 Π½ _ 7,066,559
4 Π° Π½ 6,445,422
5 Ρ€ Π° 5,305,199

3-grams (Subword):

Rank N-gram Count
1 Π° Π½ _ 4,127,441
2 _ β€” _ 2,719,160
3 а ш _ 1,910,774
4 ΠΈ Π½ _ 1,668,837
5 Π° Ρ€ Π° 1,610,648

4-grams (Subword):

Rank N-gram Count
1 Ρ‚ Π° Π½ _ 1,416,987
2 Π° Ρ… Π° Ρ€ 1,374,119
3 . _ β€” _ 1,045,081
4 Π° _ ΠΌ Π΅ 1,006,220
5 _ ΠΌ Π΅ Ρ‚ 999,858

Key Findings

  • Best Perplexity: 2-gram (subword) with 423
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~51% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.6226 1.540 3.90 520,111 37.7%
1 Subword 0.9426 1.922 9.07 1,553 5.7%
2 Word 0.1849 1.137 1.44 2,019,671 81.5%
2 Subword 0.9737 1.964 7.37 14,069 2.6%
3 Word 0.0632 1.045 1.13 2,889,994 93.7%
3 Subword 0.8560 1.810 4.97 103,627 14.4%
4 Word 0.0320 πŸ† 1.022 1.08 3,246,178 96.8%
4 Subword 0.7168 1.643 3.27 515,118 28.3%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. Π° Π΄Ρƒ ΠΉΠ°Π»Ρ‚Π°Ρˆ Ρ…Π°ΡΡ‚ΠΎΡŒΠΌΠ°Ρˆ ΠΌΠ°Π»Ρ…Π±Π°Π»Π΅Π½ ΠΊΣΠΎΡˆΡ‚Π°ΡˆΠΊΠ°Ρ€Π° ΠΏΠ°Ρ‡Ρ…ΡŒΠ°Π»ΠΊΡ…Π°Π½ Π΅Π²Ρ€ΠΎΠΏΠΈΠ½ Π΄Π΅Ρ…ΡŒΠ°ΠΉΠΎΠ»ΡƒΡˆ алсама гӏийлачу ΠΌΠ΅Ρ…Ρ†Π° Π±Π΅ΠΊ...
  2. Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΏΡ€ΠΎΠ²ΠΈΠ½Ρ†ΠΈΠ½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π²ΠΎΠ΅Π²ΠΎΠ΄Π°Π»Π»ΠΈ...
  3. Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΡˆΡ‚Π°Ρ‚Π°Π½ ΠΉΡƒΠΊΡŠΠ°Ρ…ΡŒ квинс унивСрситСт ΠΈΠΌ ΠΌ Π² ΠΏΠΎΠ½ΠΎΠΌΠ°Ρ€Ρ‘Π²Π° ΠΌ ΠΏΡ€ΠΎΡ…ΠΎΡ€ΠΎΠ² Ρ‚ 82 Ρ‚ ΠΈ

Context Size 2:

  1. Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ нисйина Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… ...
  2. Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π²ΠΎΠ΅Π²ΠΎΠ΄Π°Π»Π»ΠΈΠ½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… ...
  3. Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ чСркассин областан индСксаш ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΌΠΈΠΊΡ€ΠΎΠΊΣΠΎΡˆΡ‚Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌ...

Context Size 3:

  1. Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΌΠΈΠΊΡ€ΠΎΠΊΣΠΎΡˆΡ‚Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ нисйина Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ микрокӏ...
  2. ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ нисйина Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ Π½Π°Ρ… ...
  3. ΠΊΠ»ΠΈΠΌΠ°Ρ‚ ΠΊΡ…ΡƒΠ·Π°Ρ…ΡŒ ΠΊΠ»ΠΈΠΌΠ°Ρ‚ Π±Π°Ρ€Π°ΠΌΠ΅Ρ…ΡŒ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»Π°Π½ ΠΉΡƒ Π°ΡŒΡ…ΠΊΠ° ΠΉΠΎΠ²Ρ…Π° Ρ…ΡƒΡŒΠ»Ρƒ Ρ‚ΠΊΡŠΠ° ӏа Π±Π°Ρ€Π°ΠΌΠ΅Ρ…ΡŒ шийла Ρ…ΡƒΡŒΠ»Ρƒ ΡˆΠ°Ρ€Π°Π½...

Context Size 4:

  1. нийса лСлаш Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ utc 3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ нСклиновскан ΠΊΣΠΎΡˆΡ‚Π°Π½ индСксаш ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ…...
  2. лСлаш Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ utc 3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ сСлиТарован ΠΊΣΠΎΡˆΡ‚Π°Π½ индСксаш ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌ...
  3. Π΄Ρƒ ΡΠ°Ρ…ΡŒΡ‚Π°Π½ аса ΠΉΡƒ utc 3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ максатихан ΠΊΣΠΎΡˆΡ‚Π°Π½ индСксаш ΠΊΣΠΎΡˆΡ‚Π°Π½ Π½Π°Ρ… Π±Π΅Ρ…Π° ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _/_Ρ†ΠΈΠ»Π»Π°Π½_olevia
  2. Π°_ΠΏΠ΅Ρ€Π΅Ρ€Ρ…Π°ΡˆΠ΅Ρ._Π±Π°
  3. нилию._7959-со_к

Context Size 2:

  1. Π°_ΠΊΠΎΠΉΠ½_сахар_Ρ‚ΣΡƒΡŒ
  2. ._Ρ€Π΅_нашкая_:_спу
  3. Π½_схойн_стр_ΡˆΡ‚Π°ΠΌΠ΅

Context Size 3:

  1. Π°Π½_аркатСрия_исти_
  2. _β€”_ΠΈΡ‚Π°Π½_новгорокӏо
  3. аш_Π±Π΅Ρ…Π°_мСстник_Π³Ρƒ

Context Size 4:

  1. Ρ‚Π°Π½_ΠΊΣΠΎΡˆΡ‚Π°Π½_воСводс
  2. Π°Ρ…Π°Ρ€Ρˆ_Ρ…ΡŒΠ°ΠΆΠΎΡ€Π³Π°Ρˆ_Π½Π°Ρ…
  3. ._β€”_b.,_heidelberg,

Key Findings

  • Best Predictability: Context-4 (word) with 96.8% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (515,118 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 230,774
Total Tokens 54,539,322
Mean Frequency 236.33
Median Frequency 3
Frequency Std Dev 7087.98

Most Common Words

Rank Word Frequency
1 Π° 1,429,788
2 Π½Π°Ρ… 929,389
3 Π±Π΅Ρ…Π° 927,412
4 ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³Π°Ρˆ 892,206
5 Π² 665,820
6 ΠΊΠ»ΠΈΠΌΠ°Ρ‚ 663,481
7 ΠΌ 649,926
8 ΠΉΡƒ 631,461
9 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ…Π°Ρ€Ρˆ 595,304
10 с 497,975

Least Common Words (from vocabulary)

Rank Word Frequency
1 Π³ΠΎΡ€ΡƒΡˆΠΊΠΈΠ½ΡΠΊΠ°Π½ 2
2 тулинскан 2
3 долгопольскан 2
4 погостищСнскан 2
5 кохановскан 2
6 морховскан 2
7 нСТадовскан 2
8 Π»ΠΈΠΏΠΈΠ½ΠΈΡ†ΠΊΠ°Π½ 2
9 Π·Π°Ρ‡Π΅ΠΏΠΈΡ‡ΠΈ 2
10 ΠΌΠ΅Π΅Ρ‚ΠΈΠ³ 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.8318
RΒ² (Goodness of Fit) 0.964473
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 44.4%
Top 1,000 86.7%
Top 5,000 96.7%
Top 10,000 97.7%

Key Findings

  • Zipf Compliance: RΒ²=0.9645 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 44.4% of corpus
  • Long Tail: 220,774 words needed for remaining 2.3% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Note: Multilingual alignment visualization not available for this language.

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8761 πŸ† 0.3710 N/A N/A
mono_64d 64 0.8520 0.3045 N/A N/A
mono_128d 128 0.7849 0.2825 N/A N/A

Key Findings

  • Best Isotropy: mono_32d with 0.8761 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3193. Lower values indicate better semantic separation.
  • Alignment Quality: No aligned models evaluated in this run.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

⚠️ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 0.000 Low morphological productivity ⚠️ Likely unreliable
Idiomaticity Gap -1.000 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-ΠΊΠ° ΠΊΠ°Ρ€Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΊΠ°Ρ€Π°ΠΉΠΎΡ€Π°, ΠΊΠ°Ρ€ΠΏΠ°Ρ‚
-ΠΊΠΎ количСство, ΠΊΠΎΡ‡Π°Π½Ρ‹, ΠΊΠΎΡˆΠ΅Ρ…Π°Π±Π»Π°Π½
-ΠΌΠ° ΠΌΠ°ΠΉΠΊΠ΅Π½, ΠΌΠ°Ρ€ΡˆΠ°Π»Π»Π²ΠΈΠ»Π», машано

Productive Suffixes

Suffix Examples
-Π° Ρ€ΠΈΠ²ΠΈΡ†Π°, валСнсуэла, ΠΊΠ°Ρ€Π°ΠΉΠΎΡ€Π°
-ΠΎ ΠΌΠΎΠ½Ρ‚Π΅ΠΌΠΎΡ€ΠΎ, количСство, мятнСво
-Π½ расистийн, ΠΌΠ°ΠΉΠΊΠ΅Π½, Ρ‚Π΅Ρ„Ρ€Π°Π½
-Π°Π½ Ρ‚Π΅Ρ„Ρ€Π°Π½, Π΄ΠΌΠΈΡ‚Ρ€ΠΎΠ²Π°Π½, ΠΊΠ΅Ρ€Ρ‚Π°Π½
-Π²ΠΎ количСство, мятнСво, ΠΊΡ€Π°ΠΉΠΊΠΎΠ²ΠΎ
-ΠΊΠΈ исаковски, ΡŽΡ€ΠΈΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈ, ΠΏΠ΅Ρ€Π»Π°Π²ΠΊΠΈ
-ΠΎΠ²ΠΎ ΠΊΡ€Π°ΠΉΠΊΠΎΠ²ΠΎ, ΠΏΠ΅Ρ€Π΅Π³ΡƒΠ΄ΠΎΠ²ΠΎ, Π΄ΡƒΠ±Π½ΠΎΠ²ΠΎ
-ΠΊΠ° ΡƒΠ·Π½ΠΈΠΊΠ°, ΠΊΡƒΠΊΡƒΡˆΠΊΠ°, Ρ‚Π»Π°ΠΈΠΊΠ°

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Π°Ρ€Ρ…ΠΎ 2.04x 122 contexts Π°Ρ€Ρ…ΠΎΠ½, Ρ‚Π°Ρ€Ρ…ΠΎ, Π»Π°Ρ€Ρ…ΠΎ
Π³Π°Π»Π΄ 2.73x 16 contexts Π³Π°Π»Π΄ΠΎ, Π³Π°Π»Π΄Π°, ΡƒΠ³Π°Π»Π΄Π΅
Ρ€Π³Π°Ρˆ 2.16x 34 contexts ΡƒΡ€Π³Π°Ρˆ, Π±Π΅Ρ€Π³Π°Ρˆ, Ρ†Π΅Ρ€Π³Π°Ρˆ
Π»Π³Π°Π» 2.58x 17 contexts Π±ΠΈΠ»Π³Π°Π», Π±ΠΈΠ»Π³Π°Π»ΠΎ, Π±ΠΈΠ»Π³Π°Π»Π°
Π΅Ρ‚Ρ‚ΠΈ 1.89x 42 contexts Π±Π΅Ρ‚Ρ‚ΠΈ, Π½Π΅Ρ‚Ρ‚ΠΈ, ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ½
Ρ…Π°Ρ€Ρ… 1.88x 41 contexts Π°Ρ…Π°Ρ€Ρ…ΠΎ, Π²Π°Ρ…Π°Ρ€Ρ…, ΠΌΡƒΡ…Π°Ρ€Ρ…
Ρ…Π°Π»Π» 1.51x 92 contexts Ρ…Π°Π»Π»Π°, Ρ…Π°Π»Π»Π΅, Ρ…Π°Π»Π»ΡŒ
ийла 1.86x 35 contexts кийла, шийла, мийла
игаш 2.25x 18 contexts бигаш, Ρ†ΠΈΠ³Π°Ρˆ, книгаш
Ρ€Ρ…ΠΎΠΉ 2.21x 19 contexts Π»Π°Ρ€Ρ…ΠΎΠΉ, сурхой, сурхойн
ласт 1.59x 60 contexts пласт, ласта, сСласт
Ρ‚Ρ‚ΠΈΠ³ 1.99x 25 contexts ΠΌΠ΅Ρ‚Ρ‚ΠΈΠ³, Π³Π°Ρ‚Ρ‚ΠΈΠ³, мС́ттиг

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ΠΊΠΎ -Π° 51 words ΠΊΠΎΡ€ΠΎΠ»ΠΈΡ…Π°, ΠΊΠΎΠΊΠΎΡ€ΠΈΡ…Π°
-ΠΊΠ° -Π° 43 words ΠΊΠ°Ρ€ΠΏΠ΅Π΅Π²ΠΊΠ°, ΠΊΠ°ΠΌΠΈΠ»Π°
-ΠΊΠ° -ΠΎ 38 words ΠΊΠ°Ρ€Ρ‚Π΅Π»Π΅Π²ΠΎ, ΠΊΠ°Ρ‚ΡŽΡˆΠΈΠ½ΠΎ
-ΠΌΠ° -Π° 35 words ΠΌΠ°ΡˆΠ°ΠΊΠ΅ΠΏΠ°Ρ€Π°, ΠΌΠ°Π»Π°ΠΊΠΎΠ΄Π°
-ΠΊΠΎ -ΠΎ 33 words косогорово, косяково
-ΠΊΠ° -Π½ 31 words калустовгӏСран, ΠΊΠ°ΠΌΠ±Π»Π΅Π½
-ΠΌΠ° -Π½ 24 words малоярославСцан, ΠΌΠ°Ρ€ΡŒΠΈΠ½ΠΊΠ°Π½
-ΠΊΠΎ -Π½ 23 words ΠΊΠΎΡ€ΠΈΡ‚Π΅Π½, ΠΊΠΎΠΉΠ΄ΠΈΠ½
-ΠΌΠ° -ΠΎ 22 words ΠΌΠ°Ρ‚ΠΎΡ€ΠΎ, ΠΌΠ°Π½ΠΊΡƒΠ·ΠΎ
-ΠΊΠΎ -Π²ΠΎ 18 words косогорово, косяково

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
ΠΏΠΎΠ»ΠΊΠ°Π½ΠΎΠ²ΠΎ ΠΏΠΎΠ»ΠΊ-Π°Π½-ΠΎΠ²ΠΎ 6.0 ΠΏΠΎΠ»ΠΊ
Π°Π½Π΄Ρ€ΡŽΡˆΠΊΠΈΠ½ΠΎ Π°Π½Π΄Ρ€ΡŽΡˆ-ΠΊΠΈ-Π½ΠΎ 6.0 Π°Π½Π΄Ρ€ΡŽΡˆ
Π·ΠΈΠΌΠΎΠ²Π½ΠΈΠΊΠΈ Π·ΠΈΠΌΠΎΠ²Π½ΠΈ-ΠΊΠΈ 4.5 Π·ΠΈΠΌΠΎΠ²Π½ΠΈ
Π³Ρ€ΠΈΠ½Π²ΠΈΡ‡Π°Π½ Π³Ρ€ΠΈΠ½Π²ΠΈΡ‡-Π°Π½ 4.5 Π³Ρ€ΠΈΠ½Π²ΠΈΡ‡
Π³ΡƒΠ½Π½Π±ΡŒΡ‘Ρ€Π½Π°Π½ Π³ΡƒΠ½Π½Π±ΡŒΡ‘Ρ€Π½-Π°Π½ 4.5 Π³ΡƒΠ½Π½Π±ΡŒΡ‘Ρ€Π½
хромосоман хромосом-Π°Π½ 4.5 хромосом
Π±ΠΎΡŒΠ»ΠΊΡŠΠ°Π·Π°Ρ€Π°Π½ Π±ΠΎΡŒΠ»ΠΊΡŠΠ°Π·Π°Ρ€-Π°Π½ 4.5 Π±ΠΎΡŒΠ»ΠΊΡŠΠ°Π·Π°Ρ€
Ρ…ΣΡƒΠΌΠ°Π½Π°ΡˆΠ½Π° Ρ…ΣΡƒΠΌΠ°Π½Π°Ρˆ-Π½Π° 4.5 Ρ…ΣΡƒΠΌΠ°Π½Π°Ρˆ
Ρ‹Π½Ρ‚Ρ‹ΠΌΠ°ΠΊΠ°Π½ Ρ‹Π½Ρ‚Ρ‹ΠΌΠ°ΠΊ-Π°Π½ 4.5 Ρ‹Π½Ρ‚Ρ‹ΠΌΠ°ΠΊ
Π±Π°Ρ€Ρ‚ΠΎΠ»ΠΈΠ½Π° Π±Π°Ρ€Ρ‚ΠΎΠ»ΠΈ-Π½Π° 4.5 Π±Π°Ρ€Ρ‚ΠΎΠ»ΠΈ
судТСнскан судТСнск-Π°Π½ 4.5 судТСнск
Π±ΡƒΠ·ΠΈΠ½ΠΎΠ²ΠΊΠ° Π±ΡƒΠ·ΠΈΠ½ΠΎΠ²-ΠΊΠ° 4.5 Π±ΡƒΠ·ΠΈΠ½ΠΎΠ²
Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π°ΡˆΠ½Π° Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π°Ρˆ-Π½Π° 4.5 Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π°Ρˆ
пайхӏамаран пайхӏамар-Π°Π½ 4.5 пайхӏамар
Π½ΡƒΡŒΡ€Π½Π±Π΅Ρ€Π³Π°Π½ Π½ΡƒΡŒΡ€Π½Π±Π΅Ρ€Π³-Π°Π½ 4.5 Π½ΡƒΡŒΡ€Π½Π±Π΅Ρ€Π³

6.6 Linguistic Interpretation

Automated Insight: The language CE appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.78x)
N-gram 2-gram Lowest perplexity (423)
Markov Context-4 Highest predictability (96.8%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 10:17:57

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/ce