Chechen - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Chechen Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 2.792x | 2.80 | 0.9605% | 541,154 |
| 16k | 3.113x | 3.12 | 1.0708% | 485,447 |
| 32k | 3.423x | 3.43 | 1.1775% | 441,435 |
| 64k | 3.737x π | 3.74 | 1.2855% | 404,354 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: ΠΠ΅ΠΉΡΠ° (ΠΠΈΡ
ΠΎΡ) ΠΠ΅ΠΉΡΠ° (ΠΠ»ΡΠΆ) ΠΠ΅ΠΉΡΠ° (ΠΠ°ΡΠ°ΠΌΡΡΠ΅Ρ) ΠΠ΅ΠΉΡΠ° (ΠΡΡΠ΅Ρ) ΠΠ΅ΠΉΡΠ° (Π₯ΡΠ½Π΅Π΄ΠΎΠ°ΡΠ°) ΠΠ΅ΠΉ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ±Π΅ΠΉ ΡΠ° β( Π± ΠΈΡ
ΠΎΡ ) βΠ±Π΅ΠΉ ΡΠ° β( ... (+30 more) |
40 |
| 16k | βΠ±Π΅ΠΉ ΡΠ° β( Π± ΠΈΡ
ΠΎΡ ) βΠ±Π΅ΠΉ ΡΠ° β( ΠΊ ... (+24 more) |
34 |
| 32k | βΠ±Π΅ΠΉ ΡΠ° β( Π±ΠΈΡ
ΠΎΡ ) βΠ±Π΅ΠΉ ΡΠ° β( ΠΊΠ»ΡΠΆ ) ... (+20 more) |
30 |
| 64k | βΠ±Π΅ΠΉΡΠ° β( Π±ΠΈΡ
ΠΎΡ ) βΠ±Π΅ΠΉΡΠ° β( ΠΊΠ»ΡΠΆ ) βΠ±Π΅ΠΉΡΠ° β( ... (+14 more) |
24 |
Sample 2: ΠΠΈΡΠΊΡΡ (ΠΠΊΡΠΎΠ±Π΅Π½ ΠΎΠ±Π»Π°ΡΡΡ) ΠΠΈΡΠΊΡΡ (ΠΠ°Π½Π³ΠΈΡΡΠ°ΡΠ½Π°Π½ ΠΎΠ±Π»Π°ΡΡΡ)
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΊ ΠΈΡ ΠΊΡ Ρ β( Π°ΠΊΡ ΠΎΠ±Π΅Π½ βΠΎΠ±Π»Π°ΡΡΡ ) βΠΊ ... (+10 more) |
20 |
| 16k | βΠΊ ΠΈΡ ΠΊΡΡ β( Π°ΠΊΡ ΠΎΠ±Π΅Π½ βΠΎΠ±Π»Π°ΡΡΡ ) βΠΊ ΠΈΡ ... (+8 more) |
18 |
| 32k | βΠΊΠΈΡ ΠΊΡΡ β( Π°ΠΊΡΠΎΠ±Π΅Π½ βΠΎΠ±Π»Π°ΡΡΡ ) βΠΊΠΈΡ ΠΊΡΡ β( ΠΌΠ°Π½ ... (+3 more) |
13 |
| 64k | βΠΊΠΈΡ ΠΊΡΡ β( Π°ΠΊΡΠΎΠ±Π΅Π½ βΠΎΠ±Π»Π°ΡΡΡ ) βΠΊΠΈΡ ΠΊΡΡ β( ΠΌΠ°Π½Π³ΠΈΡΡΠ°ΡΠ½Π°Π½ ... (+2 more) |
12 |
Sample 3: Π₯ΣΠ°Π΄ΠΆΠ°Π»ΠΈ (40Β° 14' N 47Β° 16' E), (ΠΠ°ΡΠ΄Π°Π½ ΠΊΣΠΎΡΡ) Π₯ΣΠ°Π΄ΠΆΠ°Π»ΠΈ (40Β° 27' N 47Β° 05' E), (...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡ
ΣΠ° Π΄ΠΆ Π°Π»ΠΈ β( 4 0 Β° β 1 4 ... (+44 more) |
54 |
| 16k | βΡ
ΣΠ°Π΄ΠΆ Π°Π»ΠΈ β( 4 0 Β° β 1 4 ' ... (+42 more) |
52 |
| 32k | βΡ
ΣΠ°Π΄ΠΆ Π°Π»ΠΈ β( 4 0 Β° β 1 4 ' ... (+40 more) |
50 |
| 64k | βΡ
ΣΠ°Π΄ΠΆ Π°Π»ΠΈ β( 4 0 Β° β 1 4 ' ... (+40 more) |
50 |
Key Findings
- Best Compression: 64k achieves 3.737x compression
- Lowest UNK Rate: 8k with 0.9605% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 3,390 | 11.73 | 113,212 | 22.9% | 62.3% |
| 2-gram | Subword | 435 π | 8.77 | 6,171 | 54.5% | 98.0% |
| 3-gram | Word | 4,361 | 12.09 | 176,983 | 18.9% | 57.8% |
| 3-gram | Subword | 2,517 | 11.30 | 59,082 | 23.1% | 68.3% |
| 4-gram | Word | 5,357 | 12.39 | 387,928 | 16.4% | 55.1% |
| 4-gram | Subword | 6,651 | 12.70 | 339,742 | 15.1% | 48.5% |
| 5-gram | Word | 5,776 | 12.50 | 363,840 | 15.2% | 53.7% |
| 5-gram | Subword | 11,240 | 13.46 | 966,556 | 12.7% | 40.2% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½Π°Ρ
Π±Π΅Ρ
Π° |
1,039,295 |
| 2 | Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
953,014 |
| 3 | Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ
Π°ΡΡ Ρ
ΡΠ°ΠΆΠΎΡΠ³Π°Ρ |
387,484 |
| 4 | ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΊΡ
ΡΠ·Π°Ρ
Ρ |
314,080 |
| 5 | ΠΊΡ
ΡΠ·Π°Ρ
Ρ ΠΊΠ»ΠΈΠΌΠ°Ρ |
293,860 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
952,977 |
| 2 | ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΊΡ
ΡΠ·Π°Ρ
Ρ ΠΊΠ»ΠΈΠΌΠ°Ρ |
274,749 |
| 3 | ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ
Π±Π΅Ρ
Π° |
256,927 |
| 4 | Π±Π°Ρ
Π°ΡΡ
ΠΎΠΉ Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ
Π°ΡΡ Ρ
ΡΠ°ΠΆΠΎΡΠ³Π°Ρ |
156,557 |
| 5 | ΡΠ΅Π΄ Π° ΠΌ |
153,110 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
256,923 |
| 2 | Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° |
134,397 |
| 3 | Π½ΠΈΠΉΡΠ° Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ |
134,397 |
| 4 | ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ utc |
133,768 |
| 5 | Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ |
133,768 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½ΠΈΠΉΡΠ° Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° |
134,397 |
| 2 | Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ utc |
133,768 |
| 3 | Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ
ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ |
133,768 |
| 4 | ΠΈΠ½Π΄Π΅ΠΊΡΠ°Ρ ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
122,584 |
| 5 | Π°ΡΡ
ΠΊΠ° ΠΉΠΎΠ²Ρ
Π° Ρ
ΡΡΠ»Ρ ΡΠΊΡΠ° ΣΠ° |
113,661 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π° _ |
10,875,281 |
| 2 | . _ |
9,874,426 |
| 3 | Π½ _ |
8,151,111 |
| 4 | Π° Π½ |
7,675,531 |
| 5 | Ρ Π° |
6,751,030 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π° Π½ _ |
4,716,126 |
| 2 | _ β _ |
2,941,993 |
| 3 | Ρ Π° _ |
2,306,576 |
| 4 | Π° Ρ _ |
2,292,649 |
| 5 | Π° Ρ
Ρ |
2,054,431 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Π° Π½ _ |
1,577,468 |
| 2 | Π° Ρ
Π° Ρ |
1,505,060 |
| 3 | Π° _ ΠΌ Π΅ |
1,193,821 |
| 4 | Π° Ρ
Ρ _ |
1,177,180 |
| 5 | _ ΠΌ Π΅ Ρ |
1,177,138 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΌ Π΅ Ρ Ρ |
1,166,495 |
| 2 | ΠΌ Π΅ Ρ Ρ ΠΈ |
1,154,656 |
| 3 | Π΅ Ρ Ρ ΠΈ Π³ |
1,154,628 |
| 4 | Π° _ ΠΌ Π΅ Ρ |
1,067,312 |
| 5 | _ Π½ Π° Ρ
_ |
1,048,954 |
Key Findings
- Best Perplexity: 2-gram (subword) with 435
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~40% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.6776 | 1.600 | 4.20 | 526,205 | 32.2% |
| 1 | Subword | 0.9453 | 1.926 | 9.06 | 1,550 | 5.5% |
| 2 | Word | 0.1950 | 1.145 | 1.49 | 2,194,953 | 80.5% |
| 2 | Subword | 0.9623 | 1.948 | 7.39 | 14,021 | 3.8% |
| 3 | Word | 0.0756 | 1.054 | 1.15 | 3,239,505 | 92.4% |
| 3 | Subword | 0.8389 | 1.789 | 4.99 | 103,540 | 16.1% |
| 4 | Word | 0.0367 π | 1.026 | 1.08 | 3,672,181 | 96.3% |
| 4 | Subword | 0.7073 | 1.633 | 3.29 | 516,039 | 29.3% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
Π° Π·ΠΎΠ½Π΅Ρ ΡΠΊΠ»ΠΈΠΌΠ°Ρ ΡΠ²Π΅ΡΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ Π°Π»Π»Π° Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ Π°Π»Π»Π° Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ Π°Π»Π»Π° ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΉΡ Π»...Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΆΡΠ΄Π΅ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΡΡΠ°ΡΠ°Π½ ΠΉΡΠΊΡΠ°Ρ Ρ Π΄Π°ΡΠ° ΠΊΠΎΡΠΈΠΌΠΈ ΠΌΠΎΠ½ΠΊΠΈ Π³ΡΠ°ΠΉΠΊΡΡΠ° ΠΏΠ΅ΡΠΈΠΊΡ ΠΈΠ½Π΄Π΅ΠΉΠ½ ...Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΣΠΎΡΡΠ°Π½ ΠΈΠ½Π΄Π΅ΠΊΡΠ°Ρ...
Context Size 2:
Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π»Π°Ρ Π° ΠΊΠ°Π»ΠΈΡΠΎΡΠ½ΠΈ ΡΡΠ°ΡΠ°Π½ ΠΉΡΠΊΡΠ°Ρ Ρ ΠΉΡ Π±Π°Ρ Π°ΡΡ ΠΎΠΉ Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡ...Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π²ΠΎΠ΅Π²ΠΎΠ΄Π°Π»Π»ΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½Π°Ρ ...Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ Ρ ΡΠ°ΠΆΠΎΡΠ³Π°Ρ ΡΠΏΠ°Ρ Π΄Π΅ΠΌΠ΅Π½ΡΠΊΠ°Π½ ΠΊΣΠΎΡΡ ΠΊΠ°Π»ΡΠ³ΠΈΠ½ ΠΎΠ±Π»Π°ΡΡΠ°Π½ ΡΠΏΠ°Ρ Π΄Π΅ΠΌΠ΅Π½ΡΠΊΠ°Π½ ΠΊΣΠΎΡΡΠ°ΡΠ° Π΄ΣΠ°ΡΠ΅ΡΠ½Π° ΡΠ²Π»Π° Π±...
Context Size 3:
Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΡΡΠ°ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΡΡΠ°ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΡΡΠ°ΡΠ°Π½...ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΊΡ ΡΠ·Π°Ρ Ρ ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΉΡ Π»Π°ΡΡΡΠ°ΠΉΡΠΊΠΊΡΠ΅ΡΠ° Ρ ΣΠΎΡΠ΄Π°Π½ Π±Π°ΡΠ°ΠΌΠ΅Ρ Ρ ΠΉΠ΅ΠΊΡΠ° Π° ΠΉΠΎΠ²Ρ Π° ΣΠ° ΡΠΈΠΉΠ»Π° ΡΠ° Ρ ΡΡΠΉΠ»Π°Ρ Π° Π³Π°Π»ΠΊΠΈΠ½Π°...ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΡΡΠ°ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ Π½ΠΈΡΠΉΠΈ...
Context Size 4:
Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ utc 3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ Ρ ΡΠ°ΠΆΠΎΡΠ³Π°Ρ ΡΡΡΡΡΠ½ ΠΊΣΠΎΡΡΠ°Π½ ΠΈΠ½Π΄Π΅ΠΊΡΠ°Ρ ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³...Π½ΠΈΠΉΡΠ° Π»Π΅Π»Π°Ρ Π΄Ρ ΡΠ°Ρ ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ utc 3 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ Ρ ΡΠ°ΠΆΠΎΡΠ³Π°Ρ ΠΏΡΠΈΠΌΠΎΡΡΠΊΠ°Π½ ΠΊΣΠΎΡΡΠ°Π½ ΠΈΠ½Π΄Π΅ΠΊΡΠ°Ρ ΠΎΠ±Π»Π°ΡΡΠ°Π½ ΠΏΡΠΈΠΌ...Π΄Ρ ΡΠ°Ρ ΡΡΠ°Π½ Π°ΡΠ° ΠΉΡ utc 7 Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ ΠΌΠΎΡ ΠΊ
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΠΉΠ°Π΄Ρ_β_Π½_Π±ΡΠ΅_Π²ΡΠ°Π½ΡΠ°Ρ_Π³Π°Ρ Π°Ρ Π°ΡΡ Π°_Π½ΡΠ°Π»Π°Π»ΡΡΠ°Π»Π°ΡΠΊΠ»ΡΡ
Context Size 2:
Π°_Ρ ΠΈΠ»Π°_Π΄ΡΡΠ»ΠΈΠ½Π΅ΡΠ΅Ρ._Ρ-ΡΠ°ΠΊΡΡΠ±ΡΠ°_ΡΡ Ρ ΡΠ½_ΠΉΠΎΠΊΠΊΡΠ°Ρ _Π±Π΅Ρ Ρ_ΡΡ
Context Size 3:
Π°Π½_ΠΎΠ±Π»Π°ΡΡΠ°Π½_ΡΠΈΠ·Π°Π»__β_ΡΠ½Π²Π°ΡΡ_ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½ΡΠ°_Ρ ΡΠΎΠ»Π΅Ρ ΡΠ°ΠΆΠΎΡΠ³Π°Ρ_
Context Size 4:
ΡΠ°Π½_Π°ΡΠ°Π½_ΠΊΠΎΠΌΠΌΡΠ½Π°Π½_ΡΠ°Ρ Π°ΡΡ_Ρ ΡΠ°ΠΆΠΎΡΠ³Π°ΡΠΈ_(Π΄Π°_ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ_ΠΊΠΎΠΌΠΌΡΠ½Π°Π½
Key Findings
- Best Predictability: Context-4 (word) with 96.3% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (516,039 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 238,347 |
| Total Tokens | 67,032,110 |
| Mean Frequency | 281.24 |
| Median Frequency | 3 |
| Frequency Std Dev | 8160.67 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π° | 1,815,637 |
| 2 | Π½Π°Ρ | 1,049,193 |
| 3 | Π±Π΅Ρ Π° | 1,039,696 |
| 4 | ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ | 968,757 |
| 5 | ΠΉΡ | 814,157 |
| 6 | ΠΌ | 798,557 |
| 7 | ΠΊΠ»ΠΈΠΌΠ°Ρ | 741,272 |
| 8 | Π² | 736,957 |
| 9 | Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ | 631,076 |
| 10 | Ρ | 588,454 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΠΌΠΏΠ°ΡΠ°Π΄ΠΎ | 2 |
| 2 | ΡΠ½Π°Π½ΠΎ | 2 |
| 3 | ΡΡΠΊΠΎΠΏΠ΅ΡΠ°Π» | 2 |
| 4 | ΡΡΠΊΡΠΈΡΠΎΡΠΈΠΎ | 2 |
| 5 | ΠΌΠ°ΠΊΠ°ΡΠΈΠΎΡ | 2 |
| 6 | ΡΡΠΎΠΈΠΊΠ° | 2 |
| 7 | ΡΠΊΠΈΡΡΠΈΠ½Π³ | 2 |
| 8 | Π·ΠΈΠ³ΡΠΈΠ½ΡΠΎΡ | 2 |
| 9 | Π·ΠΈΠ³ΡΠΈΠ½ΡΠΎΡ | 2 |
| 10 | Π»ΡΠΊΡΠ΅ΠΌΠ±ΡΡΠ³Ρ ΠΎ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.8633 |
| RΒ² (Goodness of Fit) | 0.948539 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 41.8% |
| Top 1,000 | 83.4% |
| Top 5,000 | 96.8% |
| Top 10,000 | 97.8% |
Key Findings
- Zipf Compliance: RΒ²=0.9485 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 41.8% of corpus
- Long Tail: 228,347 words needed for remaining 2.2% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8747 | 0.3629 | N/A | N/A |
| mono_64d | 64 | 0.8592 | 0.2868 | N/A | N/A |
| mono_128d | 128 | 0.7998 | 0.2691 | N/A | N/A |
| aligned_32d | 32 | 0.8747 π | 0.3562 | 0.0120 | 0.0960 |
| aligned_64d | 64 | 0.8592 | 0.3007 | 0.0320 | 0.2180 |
| aligned_128d | 128 | 0.7998 | 0.2615 | 0.1100 | 0.3620 |
Key Findings
- Best Isotropy: aligned_32d with 0.8747 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3062. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 11.0% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.335 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ΠΊΠ° |
ΠΊΠ°ΡΠΊΠ°ΡΡΡ, ΠΊΠ°ΡΡΠ°Π³ΡΠΌΠ°Ρ ΠΈ, ΠΊΠ°ΡΠΊΠ° |
-ΠΊΠΎ |
ΠΊΠΎΡΡΡΠΎΠ²ΡΠΊΠ°Π½, ΠΊΠΎΡ ΠΎΠ²ΠΊΠ°, ΠΊΠΎΠ»ΡΠΌΠ±Π΅Ρ Ρ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Π° |
Π»Π΅Π΄Π°ΡΠ°, ΠΆΠΈΡ ΠΎΠ²ΠΊΠ°, ΠΌΠ°ΡΠ»Π΅Π½ΠΊΠ° |
-Π½ |
Π³Π°Π»ΠΈΠΉΠ½, ΠΊΡΠ²ΡΠΈΠ½, ΡΠ°ΠΌΠΎΠ΄ΠΈΠΉΠ½ |
-ΠΎ |
Π±Π΅Π»ΡΠ΅Π²ΠΎ, ΡΠ°Π½ΡΠΎΡΠΎ, ΡΡΡΠΎ |
-Π°Π½ |
ΡΣΠ°ΡΡΡΠΈΠ³Π°Π½, ΠΌΠ΅Π½Π΄Π΅Π»Π΅Π΅Π²ΡΠΊΠ°Π½, ΠΊΠΎΡΡΡΠΎΠ²ΡΠΊΠ°Π½ |
-Π²ΠΎ |
Π±Π΅Π»ΡΠ΅Π²ΠΎ, ΠΌΠΈΠ»Π»Π΅ΡΠΎΠ²ΠΎ, Π³ΠΎΡΡΠ½ΠΎΠ²ΠΎ |
-ΠΊΠ° |
ΠΆΠΈΡ ΠΎΠ²ΠΊΠ°, ΠΌΠ°ΡΠ»Π΅Π½ΠΊΠ°, ΡΠ°ΠΊΠΎΠ²ΠΊΠ° |
-ΠΎΠ²ΠΎ |
ΠΌΠΈΠ»Π»Π΅ΡΠΎΠ²ΠΎ, Π³ΠΎΡΡΠ½ΠΎΠ²ΠΎ, Π°ΡΡΠ½Π°ΠΊΠΎΠ²ΠΎ |
-ΠΊΠΈ |
Π½Π΅Π΄Π½ΠΈΠΊΠΎΠ²ΡΠΊΠΈ, Π½ΠΎΠ²ΠΎΠΊΡΠ±Π°Π½ΡΠΊΠΈ, ΠΈΠ±Π°ΡΠ°ΠΊΠΈ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
Π°ΡΡ
ΠΎ |
2.00x | 121 contexts | Π°ΡΡ ΠΎΠ½, Π»Π°ΡΡ ΠΎ, ΡΠ°ΡΡ ΠΎ |
ΠΈΡΡΠΎ |
1.91x | 130 contexts | ΠΌΠΈΡΡΠΎ, ΡΠΈΡΡΠΎ, ΠΈΡΡΠΎΠΊ |
Π³Π°Π»Π΄ |
2.88x | 16 contexts | Π³Π°Π»Π΄Π°, Π³Π°Π»Π΄ΠΎ, Π³Π°Π»Π΄ΡΠ½ |
ΡΠ³Π°Ρ |
2.28x | 34 contexts | ΡΡΠ³Π°Ρ, Π²ΠΎΡΠ³Π°Ρ, ΠΌΡΡΠ³Π°Ρ |
Ρ
Π°ΡΡ
|
2.14x | 41 contexts | ΠΉΠ°Ρ Π°ΡΡ , Ρ Π°ΡΡ ΡΠ², ΠΌΡΡ Π°ΡΡ |
ΠΈΠΊΠΈΠ½ |
1.84x | 62 contexts | Π²ΠΈΠΊΠΈΠ½, ΡΠΈΠΊΠΈΠ½, Π±ΠΈΠΊΠΈΠ½ |
Ρ
Π°Π»Π» |
1.55x | 92 contexts | Ρ Π°Π»Π»Π΅, Ρ Π°Π»Π»Ρ, Ρ Π°Π»Π»Π° |
ΡΡ
ΠΎΠΉ |
2.30x | 19 contexts | Π»Π°ΡΡ ΠΎΠΉ, ΡΡΡΡ ΠΎΠΉ, Π°Ρ Π°ΡΡ ΠΎΠΉ |
Π»Π³Π°Π» |
2.36x | 17 contexts | Π±ΠΈΠ»Π³Π°Π», Π±ΠΈΠ»Π³Π°Π»ΠΎ, Π±ΠΈΠ»Π³Π°Π»Π° |
ΠΈΠ³Π°Ρ |
2.34x | 17 contexts | Π±ΠΈΠ³Π°Ρ, ΡΠΈΠ³Π°Ρ, ΡΡ ΠΈΠ³Π°Ρ |
Π΅ΡΡΠΈ |
1.73x | 42 contexts | Π±Π΅ΡΡΠΈ, Π½Π΅ΡΡΠΈ, ΠΏΠ΅ΡΡΠΈΡ |
ΡΡΠΈΠ³ |
1.96x | 25 contexts | ΠΌΠ΅ΡΡΠΈΠ³, Π³Π°ΡΡΠΈΠ³, ΠΌΠ΅ΜΡΡΠΈΠ³ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΊΠΎ |
-Π° |
44 words | ΠΊΠΎΠΌΠ½Π°ΡΠ°, ΠΊΠΎΠ»ΠΎΡ ΡΠ° |
-ΠΊΠ° |
-ΠΎ |
40 words | ΠΊΠ°ΡΡΠ΅Π»Π»Π°ΡΠΎ, ΠΊΠ°ΡΠΌΠ°Π½ΠΊΠΎΠ²ΠΎ |
-ΠΊΠ° |
-Π° |
38 words | ΠΊΠ°Π·ΡΠ°Π½Π°, ΠΊΠ°ΠΆΠ° |
-ΠΊΠΎ |
-ΠΎ |
35 words | ΠΊΠΎΡΠΊΠΎΠ²ΠΎ, ΠΊΠΎΡΠ΅ΠΉΠΊΠΎΠ²ΠΎ |
-ΠΊΠ° |
-Π½ |
27 words | ΠΊΠ°ΡΡΠΎΠ½, ΠΊΠ°ΠΏΠ»Π°Π½Π΅ΡΠΊΠ°Π½ |
-ΠΊΠΎ |
-Π½ |
23 words | ΠΊΠΎΠ½ΠΊΠΈΡΡΠ°Π΄ΠΎΡΠ°Π½, ΠΊΠΎΡΠ½Π»ΡΠ½ |
-ΠΊΠΎ |
-Π²ΠΎ |
17 words | ΠΊΠΎΡΠΊΠΎΠ²ΠΎ, ΠΊΠΎΡΠ΅ΠΉΠΊΠΎΠ²ΠΎ |
-ΠΊΠ° |
-Π²ΠΎ |
16 words | ΠΊΠ°ΡΠΌΠ°Π½ΠΊΠΎΠ²ΠΎ, ΠΊΠ°ΠΏΡΡΡΠ΅Π²ΠΎ |
-ΠΊΠ° |
-Π°Π½ |
15 words | ΠΊΠ°ΠΏΠ»Π°Π½Π΅ΡΠΊΠ°Π½, ΠΊΠ°ΡΡΠ°Π½ |
-ΠΊΠΎ |
-Π°Π½ |
13 words | ΠΊΠΎΠ½ΠΊΠΈΡΡΠ°Π΄ΠΎΡΠ°Π½, ΠΊΠΎΡΠΎΠ²Π°Π½ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| Π΅Π²Π΄ΠΎΠΊΠΈΠΌΠΎΠ²ΡΠΊΠΈ | Π΅Π²Π΄ΠΎΠΊΠΈΠΌΠΎΠ²Ρ-ΠΊΠΈ |
4.5 | Π΅Π²Π΄ΠΎΠΊΠΈΠΌΠΎΠ²Ρ |
| Π·Π°ΠΊΠ°Π·Π½ΠΈΠΊΠ°Π½ | Π·Π°ΠΊΠ°Π·Π½ΠΈΠΊ-Π°Π½ |
4.5 | Π·Π°ΠΊΠ°Π·Π½ΠΈΠΊ |
| ΡΠ΅ΡΠ΅ΠΏΠΎΠ²Π΅ΡΠ°Π½ | ΡΠ΅ΡΠ΅ΠΏΠΎΠ²Π΅Ρ-Π°Π½ |
4.5 | ΡΠ΅ΡΠ΅ΠΏΠΎΠ²Π΅Ρ |
| Π³ΠΎΡΠΏΠΎΠ΄ΠΈΠ½ΠΎΠ²ΠΎ | Π³ΠΎΡΠΏΠΎΠ΄ΠΈΠ½-ΠΎΠ²ΠΎ |
4.5 | Π³ΠΎΡΠΏΠΎΠ΄ΠΈΠ½ |
| Π²Π°ΠΉΠ½Π°Ρ Π°Π½Π° | Π²Π°ΠΉΠ½Π°Ρ
Π°-Π½Π° |
4.5 | Π²Π°ΠΉΠ½Π°Ρ
Π° |
| Π²ΠΎΡΠΎΡΡΠ½ΡΠΊΠ°Π½ | Π²ΠΎΡΠΎΡΡΠ½ΡΠΊ-Π°Π½ |
4.5 | Π²ΠΎΡΠΎΡΡΠ½ΡΠΊ |
| ΠΊΠΈΠ½ΠΎΡΠΈΠ»ΡΠΌΠ°Π½ | ΠΊΠΈΠ½ΠΎΡΠΈΠ»ΡΠΌ-Π°Π½ |
4.5 | ΠΊΠΈΠ½ΠΎΡΠΈΠ»ΡΠΌ |
| Π΄ΠΈΠΉΡΠ°ΡΡΠ½Π° | Π΄ΠΈΠΉΡΠ°ΡΡ-Π½Π° |
4.5 | Π΄ΠΈΠΉΡΠ°ΡΡ |
| ΡΠ΅Π°ΡΡΠ°ΡΠΊΠ° | ΡΠ΅Π°ΡΡΠ°Ρ-ΠΊΠ° |
4.5 | ΡΠ΅Π°ΡΡΠ°Ρ |
| ΡΠ΅Π΄ΠΎΡΠΎΠ²Π°Π½ | ΡΠ΅Π΄ΠΎΡΠΎΠ²-Π°Π½ |
4.5 | ΡΠ΅Π΄ΠΎΡΠΎΠ² |
| Π²Π΅ΡΠ΅Π»ΠΎΠ²ΠΊΠ° | Π²Π΅ΡΠ΅Π»ΠΎΠ²-ΠΊΠ° |
4.5 | Π²Π΅ΡΠ΅Π»ΠΎΠ² |
| ΠΌΠ°ΡΠ΄ΡΠΊΠΎΠ²ΠΎ | ΠΌΠ°ΡΠ΄ΡΠΊ-ΠΎΠ²ΠΎ |
4.5 | ΠΌΠ°ΡΠ΄ΡΠΊ |
| Ρ ΠΎΠ΄ΠΎΡΠΎΠ²ΠΊΠ° | Ρ
ΠΎΠ΄ΠΎΡΠΎΠ²-ΠΊΠ° |
4.5 | Ρ
ΠΎΠ΄ΠΎΡΠΎΠ² |
| Π½ΠΎΠ²ΠΈΠΊΠΎΠ²ΡΠΊΠΈ | Π½ΠΎΠ²ΠΈΠΊΠΎΠ²Ρ-ΠΊΠΈ |
4.5 | Π½ΠΎΠ²ΠΈΠΊΠΎΠ²Ρ |
| ΠΌΠ΅ΠΆΠ΅Π½Π°ΡΠ½Π° | ΠΌΠ΅ΠΆΠ΅Π½Π°Ρ-Π½Π° |
4.5 | ΠΌΠ΅ΠΆΠ΅Π½Π°Ρ |
6.6 Linguistic Interpretation
Automated Insight: The language Chechen shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (3.74x) |
| N-gram | 2-gram | Lowest perplexity (435) |
| Markov | Context-4 | Highest predictability (96.3%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 20:55:32



















