Kashubian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Kashubian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.576x 3.58 0.1685% 179,827
16k 3.912x 3.92 0.1843% 164,376
32k 4.229x 4.24 0.1993% 152,042
64k 4.520x πŸ† 4.53 0.2130% 142,258

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: MΓ²rzebΓ³b abΓ² lΓ«sy Γ²gΓ³n (Lycopodium clavatum L.) - to je wielelatnΓ΄ roscΓ«na z rod...

Vocab Tokens Count
8k ▁mΓ²rze b Γ³b ▁abΓ² ▁lΓ« sy ▁ògΓ³n ▁( ly co ... (+29 more) 39
16k ▁mΓ²rze b Γ³b ▁abΓ² ▁lΓ« sy ▁ògΓ³n ▁( ly copo ... (+26 more) 36
32k ▁mΓ²rze b Γ³b ▁abΓ² ▁lΓ« sy ▁ògΓ³n ▁( lycopo dium ... (+22 more) 32
64k ▁mΓ²rze b Γ³b ▁abΓ² ▁lΓ« sy ▁ògΓ³n ▁( lycopodium ▁cla ... (+21 more) 31

Sample 2: NiemieckΓ΄ Karznica (pΓ²l. Karzniczka) - to je wies w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie, w s...

Vocab Tokens Count
8k ▁niemie ckΓ΄ ▁ka rz nica ▁( pΓ²l . ▁ka rz ... (+19 more) 29
16k ▁niemieckΓ΄ ▁karz nica ▁( pΓ²l . ▁karz niczka ) ▁- ... (+16 more) 26
32k ▁niemieckΓ΄ ▁karznica ▁( pΓ²l . ▁karz niczka ) ▁- ▁to ... (+15 more) 25
64k ▁niemieckΓ΄ ▁karznica ▁( pΓ²l . ▁karzniczka ) ▁- ▁to ▁je ... (+14 more) 24

Sample 3: WΓ«darzenia PΓ²lsczi krΓ³l WΕ‚adisΕ‚Γ΄w I Herman wΓ«dΓ΄Ε‚ rozkΓ΄z spΓ΄leniΓ΄ gardΓ³w w GduΕ„sc...

Vocab Tokens Count
8k ▁wΓ«darzenia ▁pΓ²lsczi ▁krΓ³l ▁wΕ‚adisΕ‚Γ΄w ▁i ▁her man ▁wΓ«dΓ΄Ε‚ ▁roz kΓ΄z ... (+6 more) 16
16k ▁wΓ«darzenia ▁pΓ²lsczi ▁krΓ³l ▁wΕ‚adisΕ‚Γ΄w ▁i ▁her man ▁wΓ«dΓ΄Ε‚ ▁roz kΓ΄z ... (+6 more) 16
32k ▁wΓ«darzenia ▁pΓ²lsczi ▁krΓ³l ▁wΕ‚adisΕ‚Γ΄w ▁i ▁herman ▁wΓ«dΓ΄Ε‚ ▁roz kΓ΄z ▁spΓ΄ ... (+5 more) 15
64k ▁wΓ«darzenia ▁pΓ²lsczi ▁krΓ³l ▁wΕ‚adisΕ‚Γ΄w ▁i ▁herman ▁wΓ«dΓ΄Ε‚ ▁rozkΓ΄z ▁spΓ΄leniΓ΄ ▁gardΓ³w ... (+3 more) 13

Key Findings

  • Best Compression: 64k achieves 4.520x compression
  • Lowest UNK Rate: 8k with 0.1685% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 1,947 10.93 6,180 31.4% 68.7%
2-gram Subword 457 πŸ† 8.84 2,749 53.5% 98.1%
3-gram Word 2,094 11.03 7,716 31.5% 69.0%
3-gram Subword 3,953 11.95 22,499 18.9% 58.2%
4-gram Word 3,732 11.87 15,312 28.0% 59.5%
4-gram Subword 18,873 14.20 102,765 10.0% 33.1%
5-gram Word 3,059 11.58 12,171 29.4% 62.6%
5-gram Subword 46,114 15.49 210,801 7.4% 25.0%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 to je 2,500
2 bΓΉtnowΓ© lΓ«nczi 1,440
3 ΓΉrodzΓ«lΓ« sΓ£ 991
4 w gminie 982
5 m jin 870

3-grams (Word):

Rank N-gram Count
1 wΓ«darzenia ΓΉrodzΓ«lΓ« sΓ£ 849
2 ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« 814
3 w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie 642
4 p p p 601
5 pΓ²mΓ²rsczim wΓ²jewΓ³dztwie w 543

4-grams (Word):

Rank N-gram Count
1 wΓ«darzenia ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« 753
2 p p p p 566
3 w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie w 537
4 i jinΓ«ch sΕ‚owiaΕ„sczich krajΓ³w 489
5 krΓ³lestwa i jinΓ«ch sΕ‚owiaΕ„sczich 489

5-grams (Word):

Rank N-gram Count
1 p p p p p 532
2 pΓ²lsczΓ©gΓ² krΓ³lestwa i jinΓ«ch sΕ‚owiaΕ„sczich 489
3 krΓ³lestwa i jinΓ«ch sΕ‚owiaΕ„sczich krajΓ³w 489
4 sΕ‚owΓ΄rzu pΓ²lsczΓ©gΓ² krΓ³lestwa i jinΓ«ch 488
5 geΓ²graficznym sΕ‚owΓ΄rzu pΓ²lsczΓ©gΓ² krΓ³lestwa i 487

2-grams (Subword):

Rank N-gram Count
1 c z 39,727
2 a _ 38,964
3 _ w 38,073
4 . _ 33,276
5 _ p 32,909

3-grams (Subword):

Rank N-gram Count
1 c z i 17,503
2 _ w _ 16,830
3 s c z 14,512
4 _ p Γ² 12,375
5 n a _ 10,995

4-grams (Subword):

Rank N-gram Count
1 s c z i 9,919
2 c z i _ 8,412
3 _ j e _ 7,786
4 Γ© g Γ² _ 7,710
5 _ n a _ 6,352

5-grams (Subword):

Rank N-gram Count
1 _ k a s z 5,271
2 k a s z Γ« 4,572
3 a s z Γ« b 4,569
4 s c z i _ 4,317
5 z Γ© g Γ² _ 4,004

Key Findings

  • Best Perplexity: 2-gram (subword) with 457
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~25% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.5411 1.455 2.97 80,925 45.9%
1 Subword 1.0139 2.019 7.32 979 0.0%
2 Word 0.1312 1.095 1.25 237,972 86.9%
2 Subword 0.9776 1.969 6.00 7,156 2.2%
3 Word 0.0409 1.029 1.07 295,594 95.9%
3 Subword 0.8837 1.845 4.13 42,873 11.6%
4 Word 0.0202 πŸ† 1.014 1.03 312,105 98.0%
4 Subword 0.6519 1.571 2.59 176,892 34.8%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. w drΓ«dΕΌich wΓ«stΔ…piwo nacygnieniΓ© i bΓΉtnowΔ… z eΓΉropejsczΓ©gΓ² partnerstwa pΓ²rtΓ« to ekΓ²nomicznΓ΄ rzΓ΄dzΓ«zn...
  2. je w geΓ²graficznym sΕ‚owΓ΄rzu pΓ²lsczΓ©gΓ² krΓ³lestwa i pierre bourdieu francΓ«sczi jΓ£zΓ«k to bΓ«Ε‚o jich rozm...
  3. i jedzeniΓ© wedle wielΓ«nΓ« lΓ«dztwa z kaszΓ«bsczΓ©gΓ² krΓ΄jΓ²braznΓ©gΓ² parkΓΉ Γ²n bΓ©Ε‚ wΓ«rΓ«ti Γ²n pisΓ΄Ε‚ m jin

Context Size 2:

  1. to je susk z rodzΓ«znΓ« swiniowatΓ«ch suidae na kaszΓ«bach ten Ε‚Γ«zgΓ΄cz ΕΌΓ«wi sΓ£ roscΓ«nama
  2. bΓΉtnowΓ© lΓ«nczi picus viridis to je roscΓ«na z rodzΓ«znΓ« cyperaceae Γ²n rosce m jin w gardze dΓ©rowaΕ‚Γ«
  3. ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« gregΓ²riaΕ„sczi kalΓ£dΓ΄rz zaczΔ…Ε‚ bΓ«c ΓΉΕΌiwΓ³ny dopiΓ©rze w na zΓ΄czΔ…tkΓΉ leno w niechtΓ«rn...

Context Size 3:

  1. wΓ«darzenia ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« przΓ«sΕ‚owia barbara swiΓ£tΓ΄ Γ² rΓ«bΓ΄kach pamiΓ£tΓ΄ jak na barbarΓ£ mrΓ³z schΓ²w...
  2. ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« augΓΉstin dominik chtΓ«ren napisΓ΄Ε‚ m jin ΕΌe kaszΓ«bi cassubiorum gΓ΄dajΔ… pΓ² wandalskΓΉ...
  3. w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie w bΓ«towsczim krΓ©zu w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie tu je paΕ‚ac a w nim klΓ΄sztΓ³r ...

Context Size 4:

  1. wΓ«darzenia ΓΉrodzΓ«lΓ« sΓ£ ΓΉmarlΓ« przΓ«sΕ‚owiΓ© w stΓ΄rim piΓ©ckΓΉ diabeΕ‚ pΓ΄li
  2. p p p p p p p p p p p p p p p swiΓ£ta Γ« ΓΉroczΓ«znΓ« midzΓ«nΓ΄rodnΓ©
  3. w pΓ²mΓ²rsczim wΓ²jewΓ³dztwie w kartΓ«sczim krΓ©zu w gminie kartuzΓ« tu ΓΉrodzyΕ‚ sΓ£ gerard labΓΉda niedalek Γ²...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _jeczΔ…cz_wierΓ«ne
  2. a_xycok_w_sΕ‚owin
  3. i_pΓ²_aromstΓ«_adz

Context Size 2:

  1. cz_gmik_47_iniewΓ²
  2. a_z_pΓ²zwΓ«bski)_na
  3. _w_rok_drΓ³lotam_p

Context Size 3:

  1. czim_jΓ£zΓ«kΓ£._strzΓ©
  2. _w_pΓ²zwa_Β«lucjonal
  3. sczi_kaszΓ«bsczΓ©gΓ²_

Context Size 4:

  1. sczi)._wiesΕ‚owie_ho
  2. czi_lΓ«dztwa_kaszΓ«bs
  3. _je_w_tim_cΓ©lu_gduΕ„

Key Findings

  • Best Predictability: Context-4 (word) with 98.0% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (176,892 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 28,419
Total Tokens 363,789
Mean Frequency 12.80
Median Frequency 3
Frequency Std Dev 147.85

Most Common Words

Rank Word Frequency
1 w 17,269
2 je 7,835
3 i 6,858
4 na 6,665
5 z 4,968
6 to 4,725
7 sΓ£ 3,705
8 do 3,388
9 rok 3,182
10 a 2,483

Least Common Words (from vocabulary)

Rank Word Frequency
1 krakowska 2
2 wΕ‚Γ£czΓ«ne 2
3 союз 2
4 eliminowaniΓ© 2
5 pΓ²liticznich 2
6 pΓ΄Ε‚na 2
7 kΓ²ntrola 2
8 ΓΉmΓ²wΓ£ 2
9 stalinizm 2
10 fssr 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9915
RΒ² (Goodness of Fit) 0.995964
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 36.1%
Top 1,000 63.4%
Top 5,000 80.0%
Top 10,000 87.6%

Key Findings

  • Zipf Compliance: RΒ²=0.9960 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 36.1% of corpus
  • Long Tail: 18,419 words needed for remaining 12.4% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.7585 0.3620 N/A N/A
mono_64d 64 0.5824 0.3234 N/A N/A
mono_128d 128 0.1382 0.3213 N/A N/A
aligned_32d 32 0.7585 πŸ† 0.3595 0.0200 0.1880
aligned_64d 64 0.5824 0.3217 0.0600 0.2480
aligned_128d 128 0.1382 0.3200 0.1040 0.3580

Key Findings

  • Best Isotropy: aligned_32d with 0.7585 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3347. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 10.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.504 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-pr przednik, przistΓ£pnΔ…, prowincΓ«jΓ£
-pΓ² pΓ²zycji, pΓ²kΓ²rΓ«, pΓ²dΓ΄wΓ΄

Productive Suffixes

Suffix Examples
-a gdΓΉΕ„ska, chΓ²robama, tradycja
-ch griphenberch, bΕ‚Γ£dnΓ«ch, pΓ²dwΓ²rzach
-zi czedrowsczi, krΓ«szczi, amerikansczi
-czi czedrowsczi, krΓ«szczi, amerikansczi
-Γ³w ΓΉrzΔ…dzeniΓ³w, wΓ«dΓ΄wkΓ³w, dzΓ©lΓ«kΓ³w

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
tΓ«rn 1.98x 29 contexts chtΓ«rny, chtΓ«rno, chtΓ«rnΓ«
chtΓ« 2.02x 27 contexts chtΓ«rΓ«, sΓ«chtΓ«, zΓ«chtΓ«
htΓ«r 2.06x 23 contexts chtΓ«rΓ«, chtΓ«re, chtΓ«rΓ΄
szΓ«b 2.02x 22 contexts kaszΓ«b, kaszΓ«bΔ…, kaszΓ«bΓ£
sczi 1.43x 67 contexts bΓΉsczi, Ε‚asczi, bΓ²sczi
zeni 1.61x 32 contexts zenice, grzenia, ΓΉczeniΓ΄
odzΓ« 1.76x 23 contexts rodzΓ«c, rodzΓ«nΓ«, rodzΓ«cΓ«
stol 1.81x 20 contexts stolp, stole, stolpe
rodz 1.40x 45 contexts rodzΔ…, rodzy, rodze
aszΓ« 1.93x 14 contexts kaszΓ«b, kaszΓ«bΔ…, kaszΓ«bΓ£
sczΓ© 1.44x 30 contexts rusczΓ©, nisczΓ©, wΔ…sczΓ©
zΓ«bs 2.09x 9 contexts kaszΓ«bsko, kaszΓ«bsce, kaszΓ«bskΓΉ

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-pr -Γ³w 23 words prawΓ³w, przezeblΓ΄kaΕ„cΓ³w
-pr -a 20 words procesama, praha
-pΓ² -a 14 words pΓ²sΕ‚Γ«ga, pΓ²lsczima
-pΓ² -ch 13 words pΓ²Ε‚Δ…czeniach, pΓ²dwΓ²dnΓ«ch
-pΓ² -Γ³w 9 words pΓ²zwΓ³w, pΓ²spΓ³lnotΓ³w
-pr -ch 7 words prawach, prezidencczich
-pΓ² -zi 6 words pΓ²lszczi, pΓ²merΓ©nczi
-pΓ² -czi 6 words pΓ²lszczi, pΓ²merΓ©nczi
-pr -zi 6 words prΓ«czkΓ²wsczi, prasczi
-pr -czi 4 words prΓ«czkΓ²wsczi, prasczi

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
paΕ„stwΓ²wich paΕ„stwΓ²wi-ch 4.5 paΕ„stwΓ²wi
mΓ²dlΓ«twΓ³w mΓ²dlΓ«tw-Γ³w 4.5 mΓ²dlΓ«tw
przebendowsczich pr-zebendows-czi-ch 4.5 zebendows
czerΓ«nkΓ³w czerΓ«nk-Γ³w 4.5 czerΓ«nk
gΓ²spΓ²darztwach gΓ²spΓ²darztwa-ch 4.5 gΓ²spΓ²darztwa
kΓ²mpΓΉtrach kΓ²mpΓΉtra-ch 4.5 kΓ²mpΓΉtra
chternych chterny-ch 4.5 chterny
instrumentΓ³w instrument-Γ³w 4.5 instrument
wiΓ©rztczi wiΓ©rzt-czi 4.5 wiΓ©rzt
etnicznych etniczny-ch 4.5 etniczny
kΓ²nkΓΉrsΓ³w kΓ²nkΓΉrs-Γ³w 4.5 kΓ²nkΓΉrs
wΓ²jskΓ²wich wΓ²jskΓ²wi-ch 4.5 wΓ²jskΓ²wi
miemiecczich miemiec-czi-ch 3.0 miemiec
pΓ²legΕ‚Γ«ch pΓ²-legΕ‚Γ«-ch 3.0 legΕ‚Γ«
programach pr-ograma-ch 3.0 ograma

6.6 Linguistic Interpretation

Automated Insight: The language Kashubian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.52x)
N-gram 2-gram Lowest perplexity (457)
Markov Context-4 Highest predictability (98.0%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 20:55:59

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/csb