Whisper Small IsiZulu

This model is a fine-tuned version of openai/whisper-small on the ISIZULU-ASR-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1039
  • Wer: 84.8668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5743 1.0 18 3.0139 187.2881
2.6299 2.0 36 2.1201 99.0315
1.7123 3.0 54 1.6249 116.5860
1.1523 4.0 72 1.3463 97.5787
0.7429 5.0 90 1.1763 72.2760
0.4828 6.0 108 1.1024 68.4019
0.2375 7.0 126 1.0793 64.7700
0.1053 8.0 144 1.0770 63.5593
0.0498 9.0 162 1.0751 102.4213
0.0264 10.0 180 1.0856 74.9395
0.0152 11.0 198 1.0842 84.0194
0.0101 12.0 216 1.0852 83.4140
0.0076 13.0 234 1.0987 61.8644
0.0068 14.0 252 1.1034 62.1065
0.0064 15.0 270 1.1039 84.8668

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
11
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zionia/whisper-small-isizulu

Finetuned
(3165)
this model

Dataset used to train zionia/whisper-small-isizulu

Evaluation results