|
|
import torch |
|
|
import os |
|
|
import tqdm |
|
|
import glob |
|
|
import multiprocessing |
|
|
from functools import partial |
|
|
|
|
|
from time_r1.utils.clip_service import SiglipClient |
|
|
from time_r1.utils.qwen_vl_utils import fetch_video |
|
|
from time_r1.utils.io import load_jsonl |
|
|
import os |
|
|
|
|
|
SIGLIP_URL = os.environ.get("SIGLIP_URL", "grpc://127.0.0.1:51000") |
|
|
clip_model = SiglipClient(base_url=SIGLIP_URL) |
|
|
|
|
|
|
|
|
def process_single_video(video_path): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
video = torch.load(video_path + ".frame_cache")["frame_tensor"] |
|
|
features = clip_model.encode_images(video) |
|
|
print(features.shape, video.shape) |
|
|
|
|
|
torch.save(features, video_path + ".feature_cache") |
|
|
except Exception as e: |
|
|
print(f'{e}, {video_path}') |
|
|
|
|
|
|
|
|
def prepare_feature_cache(video_root, dataset_path=None, num_workers=8, overwrite=False): |
|
|
if dataset_path is not None: |
|
|
|
|
|
import json |
|
|
with open(dataset_path, 'r', encoding='utf-8') as f: |
|
|
video_data = json.load(f) |
|
|
|
|
|
|
|
|
video_paths = set() |
|
|
for v in video_data: |
|
|
if "video_path" in v: |
|
|
video_paths.add(v["video_path"]) |
|
|
elif "video" in v: |
|
|
|
|
|
video_path = os.path.join(video_root, v["video"]) |
|
|
video_paths.add(video_path) |
|
|
|
|
|
video_list = list(video_paths) |
|
|
|
|
|
if not video_list: |
|
|
print(f"No MP4 videos found in {video_root}") |
|
|
return |
|
|
if not overwrite: |
|
|
print("skipping videos that already have feature cache") |
|
|
num_total = len(video_list) |
|
|
video_list = [v for v in video_list if not os.path.exists(v + ".feature_cache")] |
|
|
num_skipped = num_total - len(video_list) |
|
|
print(f"skipped {num_skipped} videos") |
|
|
|
|
|
if num_workers is None: |
|
|
num_workers = multiprocessing.cpu_count() |
|
|
|
|
|
print(f"Found {len(video_list)} videos. Starting processing with {num_workers} workers...") |
|
|
|
|
|
|
|
|
with multiprocessing.Pool(processes=num_workers) as pool: |
|
|
|
|
|
|
|
|
|
|
|
list(tqdm.tqdm(pool.imap_unordered(process_single_video, video_list), total=len(video_list))) |
|
|
|
|
|
print("All videos processed.") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import fire |
|
|
fire.Fire(prepare_feature_cache) |
|
|
|